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Because of the extended period of clinic data collection and huge size of analyzed
samples, the long-term and large-scale pharmacometabonomics profiling is frequently
encountered in the discovery of drug/target and the guidance of personalized medicine.
So far, integration of the results (ReIn) from multiple experiments in a large-scale
metabolomic profiling has become a widely used strategy for enhancing the reliability
and robustness of analytical results, and the strategy of direct data merging (DiMe)
among experiments is also proposed to increase statistical power, reduce experimental
bias, enhance reproducibility and improve overall biological understanding. However,
compared with the ReIn, the DiMe has not yet been widely adopted in current
metabolomics studies, due to the difficulty in removing unwanted variations and the
inexistence of prior knowledges on the performance of the available merging methods.
It is therefore urgently needed to clarify whether DiMe can enhance the performance of
metabolic profiling or not. Herein, the performance of DiMe on 4 pairs of benchmark
datasets was comprehensively assessed by multiple criteria (classification capacity,
robustness and false discovery rate). As a result, integration/merging-based strategies
(ReIn and DiMe) were found to perform better under all criteria than those strategies
based on single experiment. Moreover, DiMe was discovered to outperform ReIn in
classification capacity and robustness, while the ReIn showed superior capacity in
controlling false discovery rate. In conclusion, these findings provided valuable guidance
to the selection of suitable analytical strategy for current metabolomics.

Keywords: direct data merging, classification capacity, robustness, false discovery rate, long-term and large-
scale metabolomics

Abbreviations: AUC, area under the curve; CIR, cirrhosis; DiMe, direct data merging; EF, enrichment factor; ESI,
electrospray ionization; HCC, hepatocellular carcinoma; KNN, k-nearest neighbors; LC-MS, liquid chromatography-mass
spectrometry; MCC, matthews correlation coefficient; MRM-MS, multiple reaction monitoring mass spectrometry; MSTUS,
mass spectrum total useful signal; PLSDA, partial least squares discrimination analysis; ReIn, integration of the results;
ROC, receiver operating characteristic; SEN, sensitivity; SPE, specificity; SVM, Support Vector Machine; UPLC-QTOF
MS, ultra-high performance liquid chromatography-quadrupole time-of-flight mass spectrometry; VIP, Variable Importance
in the Projection.
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INTRODUCTION

Liquid chromatography-mass spectrometry has been widely
applied in pharmaceutical and clinical metabolomics to
comprehensively reveal metabolic alteration in given biological
system (Paglia and Astarita, 2017; Fu et al., 2018; Tang et al.,
2018; Yang et al., 2019), identify biomarkers and therapeutic
targets for a variety of complex diseases (Zhu et al., 2009; Yang
et al., 2016; Hu et al., 2017; Li et al., 2017c, 2019) and illuminate
mechanism of action of drugs or drug candidates (Chen et al.,
2017; Li X. et al., 2018; Li X.X. et al., 2018; Xue et al., 2018b;
Zhang et al., 2018). Because of the extended period of clinical
data collection and huge size of analyzed samples, the long-term
and large-scale metabolomic profiling is frequently encountered
in current medical study to identify physiological perturbation
in various living systems (Zhao et al., 2016; Zheng et al., 2018),
analyze time-dependency of metabolic alteration (He et al., 2015;
Han et al., 2018) and evaluate therapy and patient stratification
in personalized medicine (Li et al., 2017a; Wang et al., 2017a).
Data from large-scale metabolomics are generally collected over
long period varying from months to years and must be divided
into batches, which requires a comprehensive consideration
of all data of various batches or studies (Brunius et al., 2016;
Li Y.H. et al., 2018). So far, ReIn of multiple experiments in
large-scale metabolomics has been applied to enhance the
reliability and robustness in cancer-related metabolites profiling
(Goveia et al., 2016; Xue et al., 2018a) and marker discovery
for prediabetes or diabetes patients (Guasch-Ferre et al., 2016;
Wang et al., 2017b).

However, ReIn precludes the reanalysis of original data due
to the lack of quantitative metabolomics data and inevitably
results in inadequate statistical power (Goveia et al., 2016).
Due to the necessity of quantitative data, a database named
MetaboLights providing such information has been established
(Kale et al., 2016), which makes the reanalysis or integrated
analysis of the quantitative data possible and convenient (Haug
et al., 2013). Based on our comprehensive investigation on all
metabolomics studies in MetaboLights (Figure 1), the sample
sizes of the majority (>65%) and almost half (>45%) of these
studies are less than 100 and 50, respectively. As reported, a
total cohort of over 100 samples is essential for the identification
of a maximum of statistically significant variations in any
metabolic exploration (Billoir et al., 2015). Since the bias of
current metabolic explorations is reported to come frequently
from the inadequacy of studied samples (Zhang et al., 2006;
Subramanian, 2016), there is an urgent need to maximally enlarge
the sample size and in turn enhance the statistical power of a
given metabolomics study (Button et al., 2013).

Till now, DiMe strategy has been adopted in OMIC studies
which effectively enlarges the size of studied samples (Lazar
et al., 2013; Li et al., 2014; Switnicki et al., 2016). In particular,
new breast cancer biomarkers are identified by combining
RNA-seq gene expression data (Switnicki et al., 2016); novel
alternative splicing is found by collectively analyzing multiple
RNA-seq datasets (Li et al., 2014); the removal of batch effects
from transcriptomics data is investigated by microarray data
integration (Lazar et al., 2013). Due to the enlargement of

studied samples, DiMe demonstrates potential enhancements in
the accuracy, consistency and robustness of OMIC data analysis
(Larsson et al., 2006; Goveia et al., 2016), and is proposed
to significantly increase statistical power, reduce experimental
bias, enhance reproducibility and improve overall biological
understanding (Zhao et al., 2016). However, compared with
ReIn, the DiMe of multiple experiments has not yet been widely
used in current metabolomics studies, which may be attributed
to two major factors (Zhao et al., 2016; Li et al., 2017b).
The first is the difficulty in removing the unwanted variations
among experiments and inexistence of prior knowledges on the
performance of the available merging methods (Zhao et al.,
2016). In other word, it is still elusive whether the DiMe
can effectively enhance the performance of metabolic profiling
(Soto-Iglesias et al., 2016). The second is the existence of
multiple criteria to assess the performance of DiMe and the
great difficulty of selecting the optimal one (Li et al., 2017b;
Valikangas et al., 2018). As reported, a multiple criteria evaluation
is more effective than the single one in assessing the reliability of
integration (Lee and Smith, 2012), and a collective consideration
of multiple criteria is therefore recommended to thoroughly
evaluate the applied strategy from different perspectives (Li
et al., 2017b; Valikangas et al., 2018). All in all, because of the
distinct underlying theory of these criteria, it is very essential
to systematically assess the performance of DiMe strategy by
collectively considering all criteria.

In the study, comprehensive evaluation of different analytical
strategies was conducted by assessing their classification capacity,
robustness and false discovery rate. First, based on a systematic
review of MetaboLights a number of benchmark studies
were identified to accomplish this assessment. Then, the
integration/merging-based strategies (ReIn and DiMe) together
with the strategies based on single experiment were collectively
evaluated by multiple criteria. In conclusion, these findings
provided a valuable guidance to the selection of suitable analytical
strategy in a given metabolomics study.

MATERIALS AND METHODS

Collection of Metabolomics Datasets to
Assess the Performance of DiMe
Strategy
A systematic search in the MetaboLights database (Haug et al.,
2013) was collectively conducted to discover benchmark datasets
for the performance assessment of DiMe. First, the MetaboLights
was searched by the keyword “mass spectrometry,” which resulted
in 339 projects (September 16, 2018). Second, several criteria
were used to ensure the availability and processability of raw
metabolomics data, which included (a) complete set of raw data
files, (b) well-defined parameters (mz value, range of retention
time), (c) enough samples (>10) in each experiment, (d) same
classes of both cases and controls in different experiments, and
(e) clear description on the sample groups. The application of the
above criteria to those 339 projects resulted in eight benchmark
metabolomics datasets of varied sample sizes. In particular, these
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FIGURE 1 | Distribution of the sample sizes of all (gray) and human (green) metabolomics studies publicly available in the Metabolights database.

eight datasets included (1) a UPLC-QTOF MS dataset based
on the serums of 59 patients of HCC and 129 CIR patients
collected at Georgetown University Hospital (GUH) and run
in positive mode from an experiment conducted in May 2010
(Xiao et al., 2012), (2) a metabolomics benchmark dataset of
the MS positive mode based on the serums of 13 HCC and
50 CIR patients collected at GUH in July 2010 (Xiao et al.,
2012), (3) a UPLC-QTOF MS dataset based on the serums of
59 HCC and 129 CIR patients collected at GUH and run in
negative mode from an experiment conducted in May 2010
(Xiao et al., 2012), (4) the benchmark dataset of MS negative
mode based on the serums of 13 HCC and 50 CIR patients
collected at GUH in July 2010 (Xiao et al., 2012), (5) the UPLC-
QTOF MS dataset based on the serums of 20 HCC and 25 CIR
patients collected from Egypt and run in positive mode (Xiao
et al., 2012), (6) the metabolomics benchmark dataset of the
MS positive mode based on the serums of 20 HCC and 24 CIR
patients collected in Egypt (Xiao et al., 2012), (7) UPLC-QTOF
MS dataset based on the serums of 20 HCC and 25 CIR patients
collected in Egypt and run in negative mode (Xiao et al., 2012),
and (8) the benchmark dataset of MS negative mode based on
the serums of 20 HCC and 24 CIR patients collected from Egypt
(Xiao et al., 2012).

Direct Data Merge (DiMe) Strategy Used
in This Study Based on the m/z Values
The workflow of the DiMe strategy applied in this work was
systematically illustrated in Figure 2a. In this study, four pairs
of metabolomics benchmark datasets were adopted to assess
the performance of DiMe strategy, which included the pair of
experimental dataset (1) and dataset (2) from MTBLS17 ESI+
(Haug et al., 2013), the pair of experimental dataset (3) and
dataset (4) from MTBLS17 ESI- (Haug et al., 2013), the pair of
experimental dataset (5) and dataset (6) from MTBLS19 ESI+
(Haug et al., 2013), and the pair of experimental dataset (7),
and dataset (8) from MTBLS19 ESI- (Haug et al., 2013). In

each experimental dataset, the peak detection, retention time
(RT) correction and peak alignment were first applied to the
UHPLC/Q-TOF-MS raw data (in CDF format) using the xcmsSet,
group and rector functions in XCMS package (Smith et al., 2006)
by setting both fwhm and bw equal to ten (Li et al., 2016).
Then, two datasets in each pair were merged based on their
m/z values with tolerance of 0.05 ppm (Zhang et al., 2014). In
particular, the common peaks within above tolerance between
two datasets was selected, based on which these datasets were
merged into a large one.

Prior to the biomarker identification, the datasets were
frequently pretreated in current metabolomics study (De Livera
et al., 2012; Zhu et al., 2018; Zuo et al., 2018). Herein, the
pretreatment of merged dataset was then conducted, which
included the missing value imputation using k-Nearest Neighbor
(KNN) method and data normalization using MSTUS. The
KNN method imputed values based on K features similar to
the features with missing values (Shah et al., 2017). Among
the available imputation methods, the KNN algorithm was
reported as the most robust one for analyzing MS-based
metabolomic data (Di Guida et al., 2016). By assuming that
the number of increased and decreased metabolic signals is
relatively equivalent, the MSTUS adopted the total signal of
metabolites that was shared by all samples (Warrack et al.,
2009). MSTUS was referred as one of the best choices for
overcoming sample variability in urinary metabolomics and was
used to identify diagnostic and prognostic biomarkers (Chen
et al., 2013; Mathe et al., 2014). Therefore, the KNN algorithm
and the MSTUS method were adopted in this study to impute
the missing signal of metabolite and transform/normalize the
data matrix. After the above preparation, the training, testing
and independent test datasets were further constructed based
on the random sampling of the merged dataset. These three
datasets were prepared for assessing the identification precision
and classification capacity of DiMe strategy (described in the
last section of “Materials and Methods”). Furthermore, another
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FIGURE 2 | Schematic representations of the workflows of the analytical strategies applied in this study. (a) the pipeline of direct merge; (b) the pipeline of results
integration.

10 datasets were generated by the random sampling of half of
the merged dataset for 10 times, which were further used for
evaluating the robustness of DiMe strategy (described in the last
section of “Materials and Methods”).

After all those steps prepared above, the PLSDA was used to
identify the differential metabolic peaks between distinct sample
groups within each merged dataset. Particularly, the differential
peaks were identified by VIP >1 and p-value < 0.05 (Fan et al.,
2016), which were subsequently annotated based on human
metabolome database (HMDB) (Wishart et al., 2013) by setting
m/z tolerance equal to 20 ppm (Peng and Li, 2013). Those
resulting metabolites annotated were the metabolic biomarkers

finally identified. All in all, the workflow of DiMe strategy applied
in this study was systematically illustrated in Figure 2a.

Results Integration (ReIn) Strategy Used
in This Study Based on the Identified
Biomarkers
The workflow of the ReIn strategy applied in this work was
systematically illustrated in Figure 2b. The same four pairs of
metabolomics benchmark datasets as used in DiMe strategy
were used in this analysis. For the experimental dataset in each
pair, peak detection, RT correction and peak alignment were
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first conducted using the xcmsSet, group and rector functions
in XCMS package (Smith et al., 2006) by setting fwhm and
bw to ten (Li et al., 2016). Second, the pretreatment of each
experimental dataset was conducted using KNN for missing
value imputation and MSTUS for data normalization. Third, the
training, testing and independent test datasets were constructed
by random sampling each pretreated experimental dataset. These
three datasets were prepared for assessing the identification
precision and classification capacity of the ReIn strategy (described
in the last section of “Materials and Methods”). Meanwhile,
another 10 datasets were generated by the random sampling
of half of the pretreated experimental dataset for 10 times,
which were applied for the evaluation of robustness of the
ReIn strategy (described in the last section of “Materials and
Methods”). Fourth, PLSDA was used to identify the differential
metabolic peaks between distinct sample groups within each
dataset (VIP>1 and p-value < 0.05). The resulting metabolites
annotated based on HMDB by setting the m/z tolerance equal to
20 ppm were the metabolic biomarkers finally identified. Finally,
the metabolites annotated from two experimental datasets were
collectively considered for assessing identification precision of
the ReIn strategy, the classification models constructed based
on experimental datasets were integrated for evaluating ReIn’s
classification capacity, and the robustness of the ReIn strategy
was also collectively determined by the average overlap values
between two experiments. All in all, the workflow of ReIn strategy
applied in this study was systematically illustrated in Figure 2b.

Multiple Criteria Used for the
Performance Assessment of the
Strategies Applied
Three well-established criteria for the performance assessment
of the strategies applied were adopted in this study, which

included the identification precision, classification capacity and
robustness. As reported, these three criteria were independent
from each other (Li et al., 2017b), which was required to
be collectively considered during the performance assessments
(Tang et al., 2019). In other words, these three criteria were
mutually complemental from different perspectives, and all
were important for assessing the performance of the analytical
strategy applied in metabolomic studies (Tang et al., 2019).
Therefore, all these criteria were adopted in this study for
performance assessment.

Identification Precision
Recent studies emphasized the importance of the experimentally
validated true markers in evaluating the identification precision
of analytical strategies (Li et al., 2016; Cai et al., 2017; Li et al.,
2017b). These well-established true metabolic markers were then
used as a golden standard to assess the identification precision
based on the EF (Zhang et al., 2011; Liu et al., 2014). The
EF was used to measure the enhanced chances of true marker
identification by a given analytical strategy over the random
selection of true markers from all metabolites (Zhang et al., 2011;
Liu et al., 2014). In this study, a comprehensive literature review
on the experimentally validated true markers differentiating HCC
patients from those with CIR was first conducted. Then, the EF of
each analytical strategy was calculated based on Eq. 1:

EF =

true marker identification rate from all markers identified
true marker identification rate by random selection

(1)

EF denoted the level of enhancement in true marker
identification rate (Zhang et al., 2011). EF = 1 meant no
better than random selection. The larger EF, the greater the
likelihood to find true marker.

TABLE 1 | Classification capacities of different analytical strategies assessed by accuracy (ACC), sensitivity (SEN), specificity (SPE), Matthews correlation coefficient
(MCC) and area under the curve (AUC) based on four pairs of benchmark datasets collected from the Metabolights database.

Experiment ID ACC SEN SPE MCC AUC

MTBLS17-NEG

SiE1 0.74 0.67 0.75 0.32 0.79

SiE2 0.69 0.33 0.80 0.13 0.60

ReIn 0.73 0.60 0.76 0.29 0.70

DiMe 0.78 0.82 0.77 0.53 0.85

MTBLS17-POS

SiE1 0.59 0.58 0.59 0.13 0.57

SiE2 0.69 0.33 0.80 0.13 0.76

ReIn 0.60 0.53 0.62 0.12 0.66

DiMe 0.80 0.53 0.92 0.50 0.83

MTBLS19-NEG

SiE1 0.67 0.50 0.80 0.32 0.80

SiE2 0.56 0.50 0.60 0.10 0.80

ReIn 0.61 0.50 0.70 0.20 0.80

DiMe 0.78 0.50 1.00 0.60 0.93

MTBLS19-POS

SiE1 0.56 0.25 0.80 0.06 0.70

SiE2 0.67 0.50 0.80 0.32 0.75

ReIn 0.61 0.38 0.80 0.19 0.73

DiMe 0.72 0.50 0.90 0.44 0.88
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FIGURE 3 | Classification capacities of different analytical strategies assessed by receiver operating characteristic (ROC) and area under the curve (AUC) based on
four pairs of benchmark datasets collected from the Metabolights database.

Classification Capacity
Based on three datasets after “dataset construction” (Figure 2),
the SVM was first applied to construct the classification model
based on both training and testing datasets together with
the biomarkers identified by Student’s t-test (p-value < 0.05).
Then, independent test set was used to assess the classification
capacity of constructed model, which was evaluated by the
ROC analysis together with the measurement of AUC (Kohl
et al., 2012). The AUC values were widely considered to be one
of the most objective and valid metrics for the performance
evaluation of biomarker discovery (Xia et al., 2015). Moreover,
the classification capacity was frequently assessed by four
popular metrics including the SEN, SPE, accuracy (ACC), MCC.
Particularly, SEN was defined by the percentage of true positive
samples correctly identified as “positive” (shown in Eq. 2); SPE
denoted the proportion of true negative samples that were
correctly predicted as “negative” (shown in Eq. 3); ACC indicated
the number of true samples (positive plus negative) divided
by the number of all studied samples (shown in Eq. 4); MCC
reflected the stability of classification capacity, which described
the correlation between a predictive value and an actual value
(shown in Eq. 5).

SEN =
TP

TP+ FN
(2)

SPE =
TN

TN+ FP
(3)

ACC =
TP+ TN

TP+ FN+ TN+ FP
(4)

MCC =
(TP∗TN− FP∗FN)

√
(TP+ FN)∗(TP+ FP)∗(TN+ FP)∗(TN+ FN)

(5)

where TP, TN, FP, and FN denoted the number of true positive
samples, true negative samples, false positive samples and false
negative samples, respectively.

Robustness
First, ten sub-datasets were generated by the random sampling
of half of the pretreated experimental/merged dataset for ten
times. Second, the biomarkers were identified using Student’s
t-test (p-value < 0.05) for each dataset, and ten lists of biomarkers
were discovered. Third, for any 2 marker lists, the fraction of
shared marker appearing on both lists were used to measure
the similarity of these two lists. Particularly, overlap value was
calculated (shown in Eq. 6) based on marker lists a and b.
The closer the overlap value equal to 1, the more robust the
markers discovered in that study (Wang et al., 2014). For each
experimental/merged dataset, 45 (C102 ) overlap values denoting
all possible combinations between any two sub-datasets were thus
calculated and analyzed here.

overlap =
2× interset (a, b)

Na +Nb
(6)

where a and b indicated two maker lists, and Na and Nb denoted
the number of markers in each list.

RESULTS AND DISCUSSION

Comparative Analysis on the
Classification Capacities of the
Constructed Models
Classification model was frequently constructed in current
metabolomics research to predict samples of different disease
states (Date and Kikuchi, 2018; Maudsley et al., 2018) or
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TABLE 2 | Robustness of different analytical strategies assessed by the number of markers selected by each sampling set and overlap values based on four pairs of
benchmark datasets collected from the Metabolights database.

Experiment ID No. of
Cases/Controls

No. of MS
Peaks

Detected

No. of markers selected by the nth sampling set Overlap Median
across 10
Samplings

1 2 3 4 5 6 7 8 9 10

MTBLS17-N

SiE1 59/129 941 216 219 74 87 135 276 63 70 42 96 0.32

SiE2 13/50 1,209 37 107 50 135 47 170 60 64 129 64 0.15

ReIn 72/179 941/1,209 127 163 62 111 91 223 62 67 86 80 0.23

DiMe 72/179 734 145 81 53 115 57 95 57 66 54 125 0.40

MTBLS17-P

SiE1 60/129 1,586 161 141 43 84 113 43 114 66 114 195 0.23

SiE2 13/50 3,230 128 161 597 179 173 140 291 167 278 233 0.21

ReIn 73/179 1,586/3,230 145 151 320 132 143 92 203 117 196 214 0.19

DiMe 73/179 1,144 173 68 334 107 82 112 90 106 109 106 0.36

MTBLS19-N

SiE1 20/25 883 34 51 53 56 39 23 179 73 118 123 0.27

SiE2 20/24 825 27 114 139 216 42 60 22 112 12 32 0.21

ReIn 40/50 883/825 31 83 96 136 41 41.5 101 93 65 78 0.26

DiMe 40/50 665 66 11 57 187 109 47 27 60 76 37 0.31

MTBLS19-P

SiE1 20/25 1,526 57 104 63 91 74 164 86 76 37 52 0.19

SiE2 20/24 1,542 229 77 34 187 170 150 80 248 175 57 0.22

ReIn 40/50 1,526/1,542 143 91 49 139 122 157 83 162 106 55 0.23

DiMe 40/50 872 132 29 110 80 102 148 206 110 163 146 0.39

FIGURE 4 | Robustness of different analytical strategies assessed by the overlap values based on four pairs of benchmark datasets collected from the Metabolights
database.

assess the reliability of identified metabolic markers (Song
et al., 2017). The capacities of the constructed classification
model were evaluated by various metrics including ACC, SEN,
SPE, MCC, ROC, and the area under ROC curve (AUC
value) (Hart et al., 2017; Hou et al., 2018; Yu et al., 2018).
As illustrated in Figure 2, four different analytical strategies,

including two strategies based on datasets collected from single
experiment (SiE1 and SiE2) and two additional strategies of
ReIn and DiMe, were first evaluated by calculating their ACC,
SEN, SPE, and MCC. As shown in Table 1, there was great
variation in each assessment metric among four strategies
and among four benchmark datasets. Particularly, the ACCs,
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2) SENs, SPEs, and MCCs of MTBLS17-POS were in the ranges

of 0.59∼0.80, 0.33∼0.58, 0.59∼0.92, and 0.12∼0.50 among
strategies, respectively, and that of DiMe was estimated to be
within 0.72∼0.80, 0.50∼0.82, 0.77∼1.00, and 0.44∼0.60 among
datasets, respectively. The metrics ACC and MCC were frequently
adopted in current metabolomics to evaluate correctness (Alonso
et al., 2016) and stability (Wu et al., 2018) of constructed
prediction models. As demonstrated in Table 1, the ACCs of
DiMe were in the range of 0.72∼0.80, which were substantially
and consistently higher than that of the other 3 strategies
(0.56∼0.74). Similar to ACCs, the MCCs of DiMe (0.44∼0.60)
were discovered to be robustly higher than that of the other
strategies (0.06∼0.32), and the majority (75%) of DiMe’s MCCs
were larger than 0.50.

Apart from ACC and MCC, the ROC and AUC were
two other popular metrics widely used to assess classification
ability, which were acknowledged to achieve a comprehensive
performance evaluation. As illustrated in Figure 3, the ROC
curves and the AUC values of 4 benchmark datasets (MTBLS17-
NEG, MTBLS17-POS, MTBLS19-NEG, and MTBLS19-POS)
were compared. Two benchmark sets (MTBLS17-NEG and
MTBLS17-POS) contained 503 samples (including 358 and 145
patients with liver cirrhosis and HCC, respectively), and the
other datasets MTBLS19-NEG and MTBLS19-POS consisted
of 180 samples (100 patients with liver cirrhosis and 80
patients with HCC). The gray diagonals represented an invalid
model with the corresponding AUC value equaled to 0.5. As
shown in Table 1, the AUC values of DiMe among different
datasets (0.82∼0.93) were substantially and consistently higher
than that of the other 3 strategies (0.57∼0.80), which were
similar to the results assessed by ROC curves. In conclusion,
this finding indicated that classification correctness (assessed
by ACC, ROC, and AUC) and prediction stability (evaluated
by MCC) of the direct merge strategy (DiMe) were found
consistently better across multiple benchmark datasets compared
with the SiE1 and SiE2 strategies and the one of results
integration (ReIn).

Robustness Assessment of the Markers
Identified by Different Analytical
Strategies
Apart from prediction capacity evaluated simultaneously by
classification correctness and prediction stability, the robustness
of identified metabolic markers was widely accepted to be another
important metric with underlying theory distinct from that of
prediction capacity (Li et al., 2017b; Valikangas et al., 2018).
So far, overlap value had been recognized as the quantitative
measure of the robustness of the identified markers (Wang
et al., 2014). The higher overlap values represented the more
robust metabolic markers identified from a particular dataset
by a given strategy. In this study, a sub-dataset was first
generated by randomly selecting 50% of both cases and controls
in each benchmark dataset, and ten iterations of this selection
procedure resulted in ten sub-datasets. For each sub-dataset,
a list of differentially expressed metabolic markers were then
identified by Student’s t-test (p-value < 0.05), and the value
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TABLE 4 | A variety of metabolite biomarkers differentiating the patients of hepatocellular carcinoma (HCC) from those of cirrhosis (CIR) identified during the past ten
years.

No. True metabolite markers
differentiating HCC and CIR

HMDB
ID

Bio-fluid used
for marker
identification

Experimental strategy applied for marker
identification

Reference

1 16:0 lysophosphatidic acid 10382 Serum Profiled and then identified by UPLC-ESI-TQMS based on
the internal metabolite standard

Patterson et al.,
2011

2 18:0 lysophosphatidic acid 10384 Serum Combining the TOF MS/MS with UPLC-SRM-MS/MS using
internal standard-based isotope dilution

Kimhofer et al.,
2015

3 Acetyl carnitine 00201 Serum/Urine Verified by acquiring MS/MS spectra and further confirmed
based on the structure of commercial standard

Lu et al., 2016

4 Carnitine 00562 Serum/Urine Discovered by serum-based isotope dilution using
LC-MS/MS and analyzing the urine-based 1H MRS data

Xiao et al.,
2012

5 Creatinine 00062 Urine Identified experimentally by statistically analyzing the
urine-based 1H MRS data

Shariff et al.,
2010

6 Glycochenodeoxycholic acid 00637 Serum Verified by acquiring MS/MS spectra and then quantified
using internal standard-based isotope dilution by
UPLC-MS/MS

Ressom et al.,
2012

7 Glycocholic acid 00138 Serum Verified by acquiring MS/MS spectra and then quantified
using internal standard-based isotope dilution by
UPLC-MS/MS

Ressom et al.,
2012

8 Glycodeoxycholic acid 00631 Serum Discovered by the serum-based isotope dilution integrating
the internal standard with UPLC-SRM-MS/MS

Xiao et al.,
2012

9 Oleamide 02117 Serum Experimentally validated and identified by UPLC-MS
profiling of serum-based data

Jee et al., 2018

10 Phenylalanine 00159 Serum Detected from the serum samples based on the targeted
analysis using LC-MRM-MS/MS

Baniasadi et al.,
2013

11 Phenylalanyl-tryptophan 29006 Serum Identified by the targeted profiling using serum-based
UPLC-MS and determined by isotope-labeled quantification

Luo et al., 2017

12 Taurochenodeoxycholic acid 00951 Serum Discovered by the serum-based isotope dilution integrating
the internal standard with UPLC-SRM-MS/MS

Xiao et al.,
2012

13 Taurocholic acid 00036 Serum Verified by acquiring MS/MS spectra and then quantified
using internal standard-based isotope dilution by
UPLC-MS/MS

Ressom et al.,
2012

ESI: electrospray ionization; MRM: multiple reaction monitoring; MRS: magnetic resonance spectroscopy; SRM: selected reaction monitoring; TOF: time-of-flight; TQMS:
triple quadrupole mass spectrometry; UPLC: ultraperformance liquid chromatography.

of overlap between any two sub-datasets was calculated using
their corresponding lists of markers identified. In total, there
were 45 (C2

10) overlap values denoting all possible combinations
between any two sub-datasets. Finally, the overlap values of
four different analytical strategies were compared. As shown
in Table 2, the total numbers of markers identified by ten
sub-datasets together with the median values of overlap were
provided. It was obvious that the total numbers of identified
markers among ten sub-datasets varied significantly (from 11 to
334). Moreover, although there was great difference among the
median overlap values (from 0.15 to 0.40), the median overlap
of DiMe was found consistently larger than that of the other
three strategies.

Compared with the median value of overlap, the statistical
difference of 45 overlap values between different analytical
strategies was more meaningful to reveal the level of robustness
for each strategy. Thus, comprehensive statistical comparison
of robustness among different strategies was conducted and
illustrated in Figure 4. The overlap values of SiE1, SiE2, ReIn,
and DiMe were colored in light green, dark green, blue, and
orange, respectively. Apart from the enhanced median values
of overlap by DiMe, all overlap values of DiMe were found

statistically higher (p-value < 0.05) compared with that of the
other strategies. In particular, as illustrated in Figure 4, the
statistical differences between DiMe and other strategies (p-
value) were always lower than 0.05 within the range from
4.25E-16 to 1.81E-02. Moreover, the majority of the overlap
values of DiMe were larger than 0.3, while that of the other
strategies were lower than 0.3. These findings indicated that the
DiMe strategy performed better than others in the robustness
of the identified markers. Additionally, Table 3 demonstrated
the information of markers simultaneously discovered by N
(N ≥ 6, ≥ 7, ≥ 8, ≥ 9, = 10) sub-datasets, which included
the number and percentage of markers co-identified by these N
datasets. It was very clearly to see that the robustness of metabolic
markers identified by DiMe was much better than other three
strategies in terms of both the number and the percentage of
co-identified markers. Particularly, the percentages of markers
identified by over five sub-datasets using DiMe were within
3.25%∼5.07%, while that using SiE1 and SiE2 were 0.87%∼2.74%
and 0.93%∼2.06%, respectively. Moreover, the percentages of
markers identified by all sub-datasets using DiMe were within
0.00%∼0.41%, while that using SiE1 and SiE2 were 0.00%∼0.25%
and 0.00%∼0.21%, respectively.
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Evaluation on the False Discovery Rates
by Experimentally Validated True
Markers
Recent studies emphasized the importance of spike-in
metabolites and experimentally validated true markers in
evaluating the false discovery rates of analytical strategy (Li
et al., 2016; Cai et al., 2017; Li et al., 2017b). These well-
established true metabolic markers were frequently used as
the golden standard to assess the false discovery rates based
on their identification EF (Zhang et al., 2011; Liu et al.,
2014). Hence, a comprehensive literature review on the
experimentally validated true markers differentiating HCC
patients from those with CIR was first conducted in this
study. As a result, thirteen discriminative markers between
HCC and CIR patients were identified (Table 4). As shown,
some metabolic markers (like glycochenodeoxycholic acid) were
identified from serum samples combining TOF MS/MS with
UPLC-SRM-MS/MS based on the internal standard isotope
dilution (Tan et al., 2012; Xiao et al., 2012; Kimhofer et al.,
2015), and some other markers (like 16:0 lysophosphatidic
acid and phenylalanine) were detected by the targeted analysis
based on UPLC-ESI-TQMS (Patterson et al., 2011) and LC-
MRM-MS/MS (Baniasadi et al., 2013). Carnitine and creatinine
were first discovered by analyzing urinary 1H MRS data
(Shariff et al., 2010), but carnitine was also identified as true
marker in serum samples (Xiao et al., 2012). Since the four
benchmark datasets analyzed in this study were serum-based
data, these experimentally validated true metabolic markers
(twelve biomarkers in total, except creatinine, Table 4) were
therefore used here to evaluate the false discovery rates of each
analytical strategy.

Table 5 provided the number of the true makers covered by
both detected and identified metabolites. For each experimental
dataset (MTBLS17-NEG, MTBLS17-POS, MTBLS19-NEG, and
MTBLS19-POS), there were variations in their number of true
markers covered by the detected metabolites. In particular, the
detected metabolites in MTBLS17-POS contained the highest
number of true markers (11 for all strategies) and that in
MTBLS17-NEG covered the most variated numbers of true
markers among four strategies (from 5 to 9). Furthermore,
the number of true markers identified by strategies SiE1 and
SiE2 was found to be basically no less than that of ReIn
and DiMe, which represented the relatively equal abilities in
true marker identification among different strategies. However,
as shown in Table 5, the EF of both SiE1 and SiE2 was
consistently lower than that of ReIn and DiMe, which indicated
that, compared with ReIn and DiMe, the total numbers of
true markers discovered by SiE1 and SiE2 were more at

the cost of discovering numerous false metabolites. Moreover,
among those integration/merging-based strategies (ReIn and
DiMe), the EF values of ReIn in three experimental datasets
(MTBLS17-POS, MTBLS19-NEG, and MTBLS19-POS) were
found to be obviously higher than those of DiMe strategy,
which reflected the superior ability of ReIn strategy in
controlling false discovery rate. However, in one extreme case
(MTBLS17-NEG), the EF of ReIn was lower than that of
DiMe. Careful investigation of Table 5 revealed that only one
true marker was identified by ReIn, which led to a huge
decline in its EF values. Therefore, although ReIn demonstrated
superior ability to control false discovery rate, its application
could be limited by its relatively small number of true
markers identified.

CONCLUSION

Based on the systematic review of MetaboLights, a comprehensive
evaluation of different analytical strategies was conducted
by assessing the classification capacity, robustness and false
discovery rate. As a result, the integration/merging-based
strategies (ReIn & DiMe) performed better than strategies
based on single experiment (SiE1 & SiE2). Moreover, DiMe
strategy was found to outperform ReIn in classification capacity
and robustness, while ReIn demonstrated superior capacity in
controlling false discovery rate. In summary, these findings may
facilitate current metabolomics study in classification capacity,
identification precision, and robustness.
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