18 research outputs found

    Effect of parathyroid hormone on the structural, densitometric and failure behaviours of mouse tibia in the spatiotemporal space

    Get PDF
    Parathyroid hormone (PTH) is an anabolic bone drug approved by the US Food and Drug Administration (FDA) to treat osteoporosis. However, previous studies using cross-sectional designs have reported variable and sometimes contradictory results. The aim of the present study was to quantify the localized effect of PTH on the structural and densitometric behaviors of mouse tibia and their links with the global mechanical behavior of bone using a novel spatiotemporal image analysis approach and a finite element analysis technique. Twelve female C57BL/6J mice were divided into two groups: the control and PTH treated groups. The entire right tibiae were imaged using an in vivo micro-computed tomography (ÎĽCT) system eight consecutive times. Next, the in vivo longitudinal tibial ÎĽCT images were rigidly registered and divided into 10 compartments across the entire tibial space. The bone volume (BV), bone mineral content (BMC), bone tissue mineral density (TMD), and tibial endosteal and periosteal areas (TEA and TPA) were quantified in each compartment. Additionally, finite element models of all the tibiae were generated to analyze the failure behavior of the tibia. It was found that both the BMC and BV started to increase in the proximal tibial region, and then the increases extended to the entire tibial region after two weeks of treatment (p < 0.05). PTH intervention significantly reduced the TEA in most tibial compartments after two weeks of treatment, and the TPA increased in most tibial regions after four weeks of treatment (p < 0.05). Tibial failure loads significantly increased after three weeks of PTH treatment (p < 0.01). The present study provided the first evidence of the localized effect of PTH on bone structural and densitometric properties, as well as their links with the global mechanical behaviors of bone, which are important pieces of information for unveiling the mechanism of PTH intervention

    Environmental Controls on Multi-Scale Dynamics of Net Carbon Dioxide Exchange From an Alpine Peatland on the Eastern Qinghai-Tibet Plateau

    Get PDF
    Peatlands are characterized by their large carbon storage capacity and play an essential role in the global carbon cycle. However, the future of the carbon stored in peatland ecosystems under a changing climate remains unclear. In this study, based on the eddy covariance technique, we investigated the net ecosystem CO2 exchange (NEE) and its controlling factors of the Hongyuan peatland, which is a part of the Ruoergai peatland on the eastern Qinghai-Tibet Plateau (QTP). Our results show that the Hongyuan alpine peatland was a CO2 sink with an annual NEE of -226.61 and -185.35 g C m(-2) in 2014 and 2015, respectively. While, the non-growing season NEE was 53.35 and 75.08 g C m(-2) in 2014 and 2015, suggesting that non-growing seasons carbon emissions should not be neglected. Clear diurnal variation in NEE was observed during the observation period, with the maximum CO2 uptake appearing at 12:30 (Beijing time, UTC+8). The Q(10) value of the non-growing season in 2014 and 2015 was significantly higher than that in the growing season, which suggested that the CO2 flux in the non-growing season was more sensitive to warming than that in the growing season. We investigated the multi-scale temporal variations in NEE during the growing season using wavelet analysis. On daily timescales, photosynthetically active radiation was the primary driver of NEE. Seasonal variation in NEE was mainly driven by soil temperature. The amount of precipitation was more responsible for annual variation of NEE. The increasing number of precipitation event was associated with increasing annual carbon uptake. This study highlights the need for continuous eddy covariance measurements and time series analysis approaches to deepen our understanding of the temporal variability in NEE and multi-scale correlation between NEE and environmental factors

    Stabilities of heavy metals in soils treated with red mud

    No full text

    Methane Emissions Offset Net Carbon Dioxide Uptake From an Alpine Peatland on the Eastern Qinghai-Tibetan Plateau

    Get PDF
    Peatlands store large amounts of carbon (C) and actively exchange greenhouse gases (GHGs) with the atmosphere, thus significantly affecting global C cycle and climate. Large uncertainty exists in C and GHG estimates of the alpine peatlands on Qinghai-Tibetan Plateau (QTP), as direct measurements of CO2 and CH4 fluxes are scarce in this region. In this study, we provided 32-month CO2 and CH4 fluxes measured using the eddy covariance (EC) technique in a typical alpine peatland on the eastern QTP to estimate the net C and CO2 equivalent (CO2-eq) fluxes and investigate their environmental controls. Our results showed that the mean annual CO2 and CH4 fluxes were -68 +/- 8 g CO2-C m(-2) yr(-1) and 35 +/- 0.3 g CH4-C m(-2) yr(-1), respectively. While considering the traditional and sustained global warming potentials of CH4 over the 100-year timescale, the peatland acted as a net CO2-eq source (1,059 +/- 30 and 1,853 +/- 31 g CO2-eq m(-2) yr(-1), respectively). The net CO2-eq emissions during the non-growing seasons contributed to over 40% of the annual CO2-eq budgets. We further found that net CO2-eq flux was primarily influenced by global radiation and soil temperature variations. This study was the first assessment to quantify the net CO2-eq flux of the alpine peatland in the QTP region using EC measurements. Our study highlights that CH4 emissions from the alpine peatlands can largely offset the net cooling effect of CO2 uptake and future climate changes such as global warming might further enhance their potential warming effect

    High-efficiency refractive index sensor based on the metallic nanoslit arrays with gain-assisted materials

    No full text
    We have designed and investigated a three-band refractive index (RI) sensor in the range of 550–900 nm based on the metal nanoslit array with gain-assisted materials. The underlying mechanism of the three-band and enhanced characteristics of the metal nanoslit array with gain-assisted materials, have also been investigated theoretically and numerically. Three resonant peaks in transmission spectra are deemed to be in different plasmonic resonant modes in the metal nanoslit array, which leads to different responses for the plasmonic sensor. By embedding the structure into the CYTOP with proper gain-assisted materials, the sensing performances can be greatly enhanced due to a dramatic amplification of the extraordinary optical transmission (EOT) resonance by the gain medium. When the gain values reach their corresponding thresholds for the three plasmonic modes, the ultrahigh sensitivities in three bands can be obtained, and especially for the second resonant wavelength (λ2), the FOM=128.1 and FOM* = 39100 can be attained at the gain threshold of k =0.011. Due to these unique features, the designing scheme of the proposed gain-assisted nanoslit sensor could provide a powerful approach to optimize the performance of EOT-based sensors and offer an excellent platform for biological sensing

    Image_1_Plasma single-stranded DNA autoantibodies in the diagnosis of Hirschsprung’s disease.JPEG

    No full text
    BackgroundHirschsprung’s disease (HSCR) is a neonatal enteric nervous system (ENS) disease characterized by congenital enteric ganglion cell loss. The only treatment is aganglionic bowel segment resection and innervated bowel segment reconstruction. Delayed diagnosis and treatment cause postoperative complications such as intractable constipation and enterocolitis. Existing preoperative HSCR diagnostic methods have shortcomings such as false positives, radiation and invasiveness.MethodsWe used the robust linear model (RLM) for normalization and the M statistic for screening plasma human autoimmune antigen microarrays and quantitatively assessed single-stranded DNA (ssDNA) antibody levels with enzyme-linked immunosorbent assay (ELISA).ResultsThe autoimmune antigen microarray revealed that autoantibodies were higher in HSCR plasma than in disease control (DC) and healthy control (HC) plasma. ssDNA antibodies in HSCR plasma were significantly higher than those in DC and HC plasma. Quantitative ssDNA antibody level detection in plasma by ELISA showed that HSCR (n = 32) was 1.3- and 1.7-fold higher than DC (n = 14) and HC (n = 25), respectively. ssDNA antibodies distinguished HSCR from non-HSCR (HC and DC), achieving an area under the curve (AUC) of 0.917 (95% CI, 0.8550–0.9784), with a sensitivity of 96.99% and a specificity of 74.63%.ConclusionssDNA antibodies in plasma can serve as a diagnostic biomarker for HSCR in the clinic.</p

    RNA binding protein 24 regulates the translation and replication of hepatitis C virus

    No full text
    Abstract The secondary structures of hepatitis C virus (HCV) RNA and the cellular proteins that bind to them are important for modulating both translation and RNA replication. However, the sets of RNA-binding proteins involved in the regulation of HCV translation, replication and encapsidation remain unknown. Here, we identified RNA binding motif protein 24 (RBM24) as a host factor participated in HCV translation and replication. Knockdown of RBM24 reduced HCV propagation in Huh7.5.1 cells. An enhanced translation and delayed RNA synthesis during the early phase of infection was observed in RBM24 silencing cells. However, both overexpression of RBM24 and recombinant human RBM24 protein suppressed HCV IRES-mediated translation. Further analysis revealed that the assembly of the 80S ribosome on the HCV IRES was interrupted by RBM24 protein through binding to the 5′-UTR. RBM24 could also interact with HCV Core and enhance the interaction of Core and 5′-UTR, which suppresses the expression of HCV. Moreover, RBM24 enhanced the interaction between the 5′- and 3′-UTRs in the HCV genome, which probably explained its requirement in HCV genome replication. Therefore, RBM24 is a novel host factor involved in HCV replication and may function at the switch from translation to replication
    corecore