955 research outputs found

    A continues multi-material toolpath planning for tissue scaffolds with hollowed features

    Get PDF
    This paper presents a new multi-material based toolpath planning methodology for porous tissue scaffolds with multiple hollowed features. Ruled surface with hollowed features generated in our earlier work is used to develop toolpath planning. Ruling lines are reoriented to enable continuous and uniform size multi-material printing through them in two steps. Firstly, all ruling lines are matched and connected to eliminate start and stops during printing. Then, regions with high number of ruling lines are relaxed using a relaxation technique to eliminate over deposition. A novel layer-by-layer deposition process is progressed in two consecutive layers: The first layer with hollow shape based zigzag pattern and the next layer with spiral pattern deposition. Heterogeneous material properties are mapped based on the parametric distances from the hollow features

    Classification analysis on physicochemical properties of coloured and non-coloured waxy rice

    Get PDF
    Six coloured and six non-coloured waxy rice varieties were analyzed by determining amylose, fat, and protein content, pasting, and thermal properties. Significant differences in protein content as well as pasting properties between coloured and non-coloured waxy rice were identified. It was demonstrated that protein may have a main influence on pasting and thermal properties of waxy rice. In addition, the optimal linear relationship between protein and pasting or thermal properties was found by combining RVA and DSC data using Principal component analysis (PCA). Typical indicators, which can classify coloured and non-coloured waxy rice, could be identified by Hierarchical cluster analysis (HCA). In pasting properties, trough and consistency viscosity were typical indicators; in thermal properties, enthalpy and stop temperature were typical indicators

    A liquid helium target system for a measurement of parity violation in neutron spin rotation

    Full text link
    A liquid helium target system was designed and built to perform a precision measurement of the parity-violating neutron spin rotation in helium due to the nucleon-nucleon weak interaction. The measurement employed a beam of low energy neutrons that passed through a crossed neutron polarizer--analyzer pair with the liquid helium target system located between them. Changes between the target states generated differences in the beam transmission through the polarizer--analyzer pair. The amount of parity-violating spin rotation was determined from the measured beam transmission asymmetries. The expected parity-violating spin rotation of order 10610^{-6} rad placed severe constraints on the target design. In particular, isolation of the parity-odd component of the spin rotation from a much larger background rotation caused by magnetic fields required that a nonmagnetic cryostat and target system be supported inside the magnetic shielding, while allowing nonmagnetic motion of liquid helium between separated target chambers. This paper provides a detailed description of the design, function, and performance of the liquid helium target system.Comment: V2: 29 pages, 14 figues, submitted to Nucl. Instrum. Meth. B. Revised to address reviewer comment

    Electroweak Radiative Corrections to Parity-Violating Electroexcitation of the Δ\Delta

    Get PDF
    We analyze the degree to which parity-violating (PV) electroexcitation of the Δ(1232)\Delta(1232) resonance may be used to extract the weak neutral axial vector transition form factors. We find that the axial vector electroweak radiative corrections are large and theoretically uncertain, thereby modifying the nominal interpretation of the PV asymmetry in terms of the weak neutral form factors. We also show that, in contrast to the situation for elastic electron scattering, the axial NΔN\to\Delta PV asymmetry does not vanish at the photon point as a consequence of a new term entering the radiative corrections. We argue that an experimental determination of these radiative corrections would be of interest for hadron structure theory, possibly shedding light on the violation of Hara's theorem in weak, radiative hyperon decays.Comment: RevTex, 76 page

    A Current Mode Detector Array for Gamma-Ray Asymmetry Measurements

    Full text link
    We have built a CsI(Tl) gamma-ray detector array for the NPDGamma experiment to search for a small parity-violating directional asymmetry in the angular distribution of 2.2 MeV gamma-rays from the capture of polarized cold neutrons by protons with a sensitivity of several ppb. The weak pion-nucleon coupling constant can be determined from this asymmetry. The small size of the asymmetry requires a high cold neutron flux, control of systematic errors at the ppb level, and the use of current mode gamma-ray detection with vacuum photo diodes and low-noise solid-state preamplifiers. The average detector photoelectron yield was determined to be 1300 photoelectrons per MeV. The RMS width seen in the measurement is therefore dominated by the fluctuations in the number of gamma rays absorbed in the detector (counting statistics) rather than the intrinsic detector noise. The detectors were tested for noise performance, sensitivity to magnetic fields, pedestal stability and cosmic background. False asymmetries due to gain changes and electronic pickup in the detector system were measured to be consistent with zero to an accuracy of 10910^{-9} in a few hours. We report on the design, operating criteria, and the results of measurements performed to test the detector array.Comment: 33 pages, 20 figures, 2 table

    Semileptonic decays of Bs1B_{s1}, Bs2B_{s2}^*, Bs0B_{s0} and Bs1B_{s1}'

    Full text link
    Stimulated by recent observations of the excited bottom-strange mesons Bs1B_{s1} and Bs2B_{s2}^*, we calculate the semileptonic decays Bs0,Bs1,Bs1,Bs2[Ds(1968),Ds(2112),DsJ(2317),DsJ(2460)]νˉB_{s0}, B_{s1}^{\prime}, B_{s1}, B_{s2}^*\to [D_s(1968), D_{s}^*(2112), D_{sJ}(2317), D_{sJ}(2460)]\ell\bar{\nu}, which is relevant for the exploration of the potential of searching these semileptonic decays in experiment.Comment: 11 pages, 3 figures, 9 tables. More discussion added, some descriptions changed. The version to appear in EPJ

    Quantum Anti-Zeno Effect

    Get PDF
    We demonstrate that near threshold decay processes may be accelerated by repeated measurements. Examples include near threshold photodetachment of an electron from a negative ion, and spontaneous emission in a cavity close to the cutoff frequency, or in a photon band gap material.Comment: 4 pages, 3 figure

    Precision Measurement of PArity Violation in Polarized Cold Neutron Capture on the Proton: the NPDGamma Experiment

    Full text link
    The NPDGamma experiment at the Los Alamos Neutron Science Center (LANSCE) is dedicated to measure with high precision the parity violating asymmetry in the γ\gamma emission after capture of spin polarized cold neutrons in para-hydrogen. The measurement will determine unambiguously the weak pion-nucleon-nucleon (πNN\pi NN) coupling constant {\it fπ1^1_{\pi}}Comment: Proceedings of the PANIC'05 Conference, Santa Fe, NM, USA, October 24-28, 2005, 3 pages, 2 figure

    Parity-violating neutron spin rotation in hydrogen and deuterium

    Full text link
    We calculate the (parity-violating) spin rotation angle of a polarized neutron beam through hydrogen and deuterium targets, using pionless effective field theory up to next-to-leading order. Our result is part of a program to obtain the five leading independent low-energy parameters that characterize hadronic parity-violation from few-body observables in one systematic and consistent framework. The two spin-rotation angles provide independent constraints on these parameters. Using naive dimensional analysis to estimate the typical size of the couplings, we expect the signal for standard target densities to be 10^-7 to 10^-6 rad/m for both hydrogen and deuterium targets. We find no indication that the nd observable is enhanced compared to the np one. All results are properly renormalized. An estimate of the numerical and systematic uncertainties of our calculations indicates excellent convergence. An appendix contains the relevant partial-wave projectors of the three-nucleon system.Comment: 44 pages, 17 figures; minor corrections; to be published in EPJ

    Pair production of the heavy leptons in future high energy linear e^{+}e^{-} colliders

    Full text link
    The littlest Higgs model with T-parity predicts the existence of the T-odd particles, which can only be produced in pair. We consider pair production of the T-odd leptons in future high energy linear e+ee^{+}e^{-} collider (ILCILC). Our numerical results show that, as long as the T-odd leptons are not too heavy, they can be copiously produced and their possible signals might be detected via the processes e+eLˉiLje^{+}e^{-}\to \bar{L}_{i}L_{j} in future ILCILC experiments.Comment: Discussions added, typos and references correcte
    corecore