57 research outputs found

    Analyzing drop coalescence in microfluidic devices with a deep learning generative model

    Get PDF
    Predicting drop coalescence based on process parameters is crucial for experimental design in chemical engineering. However, predictive models can suffer from the lack of training data and more importantly, the label imbalance problem. In this study, we propose the use of deep learning generative models to tackle this bottleneck by training the predictive models using generated synthetic data. A novel generative model, named double space conditional variational autoencoder (DSCVAE) is developed for labelled tabular data. By introducing label constraints in both the latent and the original space, DSCVAE is capable of generating consistent and realistic samples compared to the standard conditional variational autoencoder (CVAE). Two predictive models, namely random forest and gradient boosting classifiers, are enhanced on synthetic data and their performances are evaluated based on real experimental data. Numerical results show that a considerable improvement in prediction accuracy can be achieved by using synthetic data and the proposed DSCVAE clearly outperforms the standard CVAE. This research clearly provides more insights into handling imbalanced data for classification problems, especially in chemical engineering

    Explainable AI models for predicting drop coalescence in microfluidics device

    Get PDF
    In the field of chemical engineering, understanding the dynamics and probability of drop coalescence is not just an academic pursuit, but a critical requirement for advancing process design by applying energy only where it is needed to build necessary interfacial structures, increasing efficiency towards Net Zero manufacture. This research applies machine learning predictive models to unravel the sophisticated relationships embedded in the experimental data on drop coalescence in a microfluidics device. Through the deployment of SHapley Additive exPlanations values, critical features relevant to coalescence processes are consistently identified. Comprehensive feature ablation tests further delineate the robustness and susceptibility of each model. Furthermore, the incorporation of Local Interpretable Model-agnostic Explanations for local interpretability offers an elucidative perspective, clarifying the intricate decision-making mechanisms inherent to each model’s predictions. As a result, this research provides the relative importance of the features for the outcome of drop interactions. It also underscores the pivotal role of model interpretability in reinforcing confidence in machine learning predictions of complex physical phenomena that are central to chemical engineering applications

    Accurate identification and measurement of the precipitate area by two-stage deep neural networks in novel chromium-based alloys

    Get PDF
    The performance of advanced materials for extreme environments is underpinned by their microstructure, such as the size and distribution of nano- to micro-sized reinforcing phase(s). Chromium-based superalloys are a recently proposed alternative to conventional face-centred-cubic superalloys for high-temperature applications, e.g., Concentrated Solar Power. Their development requires the determination of precipitate volume fraction and size distribution using Electron Microscopy (EM), as these properties are crucial for the thermal stability and mechanical properties of chromium superalloys. Traditional approaches to EM image processing utilise filtering with a fixed contrast threshold, leads to weak robustness to background noise and poor generalisability to different materials. It also requires an enormous amount of time for manual object measurements on large datasets. Efficient and accurate object detection and segmentation are therefore highly desired to accelerate the development of novel materials like chromium-based superalloys. To address these bottlenecks, based on YOLOv5 and SegFormer structures, this study proposes an end-to-end, two-stage deep learning scheme, DT-SegNet, to perform object detection and segmentation for EM images. The proposed approach can thus benefit from the training efficiency of CNNs at the detection stage (i.e., a small number of training images required) and the accuracy of the ViT at the segmentation stage. Extensive numerical experiments demonstrate that the proposed DT-SegNet significantly outperforms the state-of-the-art segmentation tools offered by Weka and ilastik regarding a large number of metrics, including accuracy, precision, recall and F1-score. This model forms a useful tool to aid alloy development microstructure examinations, and offers significant advantages to address the large datasets associated with highthroughput alloy development approaches

    Accurate identification and measurement of the precipitate area by two-stage deep neural networks in novel chromium-based alloys

    Get PDF
    The performance of advanced materials for extreme environments is underpinned by their microstructure, such as the size and distribution of nano- to micro-sized reinforcing phase(s). Chromium-based superalloys are a recently proposed alternative to conventional face-centred-cubic superalloys for high-temperature applications, e.g., Concentrated Solar Power. Their development requires the determination of precipitate volume fraction and size distribution using Electron Microscopy (EM), as these properties are crucial for the thermal stability and mechanical properties of chromium superalloys. Traditional approaches to EM image processing utilise filtering with a fixed contrast threshold, leads to weak robustness to background noise and poor generalisability to different materials. It also requires an enormous amount of time for manual object measurements on large datasets. Efficient and accurate object detection and segmentation are therefore highly desired to accelerate the development of novel materials like chromium-based superalloys. To address these bottlenecks, based on YOLOv5 and SegFormer structures, this study proposes an end-to-end, two-stage deep learning scheme, DT-SegNet, to perform object detection and segmentation for EM images. The proposed approach can thus benefit from the training efficiency of CNNs at the detection stage (i.e., a small number of training images required) and the accuracy of the ViT at the segmentation stage. Extensive numerical experiments demonstrate that the proposed DT-SegNet significantly outperforms the state-of-the-art segmentation tools offered by Weka and ilastik regarding a large number of metrics, including accuracy, precision, recall and F1-score. This model forms a useful tool to aid alloy development microstructure examinations, and offers significant advantages to address the large datasets associated with high-throughput alloy development approaches
    • …
    corecore