7 research outputs found

    MeWRKY IIas, subfamily genes of WRKY transcription factors from cassava, play an important role in disease resistance

    Get PDF
    Cassava (Manihot esculenta Crantz) is an important tropical crop for food, fodder, and energy. Cassava bacterial blight (CBB) caused by Xanthomonas axonopodis pv. manihotis (Xam) occurs in all cassava growing regions and threatens global cassava production. WRKY transcription factor family plays the essential roles during plant growth, development, and abiotic or biotic stress. Particularly, previous studies have revealed the important role of the group IIa WRKY genes in plant disease resistance. However, a comprehensive analysis of group IIa subfamily in cassava is still missing. Here, we identified 102 WRKY members, which were classified into three groups, I, II, and III. Transient expression showed that six MeWRKY IIas were localized in the nucleus. MeWRKY IIas transcripts accumulated significantly in response to SA, JA, and Xam. Overexpression of MeWRKY27 and MeWRKY33 in Arabidopsis enhanced its resistance to Pst DC3000. In contrast, silencing of MeWRKY27 and MeWRKY33 in cassava enhanced its susceptibility to Xam. Co-expression network analysis showed that different downstream genes are regulated by different MeWRKY IIa members. The functional analysis of downstream genes will provide clues for clarifying molecular mechanism of cassava disease resistance. Collectively, our results suggest that MeWRKY IIas are regulated by SA, JA signaling, and coordinate response to Xam infection

    Detection system for coal mine electrical inspection instrument with digital display based on machine visio

    No full text
    In view of problems of low measurement efficiency, high labour intensity and being influenced by subjective factors in manually calibrating coal mine electrical inspection instrument with digital display, an automatic inspection system for coal mine electrical inspection instrument with digital display was designed based on machine vision. The system controls power on of the instrument and a video to get booting process, and uses high lights statistics mode to identify key display frame of the electrical inspection instrument, uses template matching to complete automatic identification of the display image, and uses digit recognition with threading method to detect the measurement accuracy automaticly. Validity of the designed system is verified with experiment results from industrial prototype system

    Microalgal Consortia for Waste Treatment and Valuable Bioproducts

    No full text
    Microalgae have been considered a promising and sustainable candidate for wastewater treatment and valuable bioproducts, such as feedstocks for food, nutrients, and energy. However, many challenging bottlenecks, such as low biomass productivity, expensive biomass harvesting techniques, and inefficient extraction of biofuels restrict its large-scale commercial production. Symbiotic relationships between microalgae and bacteria, also known as microalgal consortia, have proven to be effective solutions for mitigating technical and economic limitations. The natural and artificial symbiotic microalgal consortia combine microorganisms with various metabolic activities, which leads to valuable biomass production and the removal of nutrients, pharmaceuticals, and personal care products (PPCP) from wastewater. Many microalgal consortia have been applied for various wastewater treatments with reduced energy costs and higher efficiency in recovering valuable resources. In this study we review the present research status and prospects of microalgal consortia, emphasizing the associated mechanism of microalgae consortia cooperative symbiosis and its studies on diverse environmental and biotechnological applications

    3<i>L</i>, Three-<i>Lactobacilli</i> on Recovering of Microbiome and Immune-Damage by Cyclophosphamide Chemotherapy—A Pilot Experiment in Rats

    No full text
    We deal with various strains of Lactobacillus that can maintain the intestinal microbiome of rats treated with cyclophosphamide, an anticancer agent (chemotherapy). We use MiSeq and various types of statistical tests to prove that cyclophosphamide in rats alters the intestinal microbiome, favoring the growth of various fungi that are extremely harmful to intestinal metabolism. On the contrary, when Lactobacillus 3L is administered together with cyclophosphamide, we prove that the microbiome is preserved by having a much better intestinal metabolism
    corecore