17 research outputs found

    Time-Optimal Control for High-Order Chain-of-Integrators Systems with Full State Constraints and Arbitrary Terminal States

    Full text link
    Time-optimal control for high-order chain-of-integrators systems with full state constraints and arbitrary given terminal states remains a challenging problem in the optimal control theory domain, yet to be resolved. To enhance further comprehension of the problem, this paper establishes a novel notation system and theoretical framework, successfully providing the switching manifold for high-order problems in the form of switching law. Through deriving properties of switching laws on signs and dimension, this paper proposes a definite condition for time-optimal control. Guided by the developed theory, a trajectory planning method named the manifold-intercept method (MIM) is developed. The proposed MIM can plan time-optimal jerk-limited trajectories with full state constraints, and can also plan near-optimal higher-order trajectories with negligible extra motion time. Numerical results indicate that the proposed MIM outperforms all baselines in computational time, computational accuracy, and trajectory quality by a large gap

    Forest emissions reduction assessment from airborne LiDAR data using multiple machine learning approaches

    Get PDF
    Objective: This study aims to evaluate the accuracy of different modeling methods and tree structural parameters extracted from airborne LiDAR for estimating carbon emissions reduction and assess their reliability as Certified Emission Reduction (CER) assessment techniques.Methods: LiDAR data was collected from an afforestation project in Beijing, China. Various modeling methods, including statistical regression and machine learning algorithms, were used to estimate biomass and carbon emissions reduction. The models were evaluated under two schemes: tree-species-specific modeling scheme (Scheme 1) and all-sample modeling scheme (Scheme 2) using cross-validation and compared with ground-based estimations and pre-estimated emission reductions.Results: Totally, the biomass estimation models in scheme 1 showed better accuracy than scheme 2. In scheme 1, The Random Forest (RF) and Cubist models achieved the highest prediction accuracy (R2 = 0.89, RMSE = 22.87 kg, CV RMSE = 52.00 kg), followed by GDBT and Cubist, with SVR and GAM performing the weakest. In scheme 2, Cubist model had the highest accuracy (R2 = 0.75, RMSE = 33.95 kg, CV RMSE = 36.05 kg), followed by RF and GBDT, with SVR and GAM performing the weakest. LiDAR-based estimates of carbon emissions reduction were closer to ground-based estimations and higher than pre-estimated values.Conclusion: This study demonstrates that LiDAR-based models using tree structural parameters can accurately assess carbon emissions reduction. The models outperformed traditional methods in terms of cost and accuracy. Considering tree species in the modeling process improved the accuracy of the models. LiDAR technology has the potential to be a reliable assessment technique for carbon emissions reduction in forestry projects. The pre-trained models can be used for multiple predictions, reducing the cost of carbon sink surveys. Overall, LiDAR-based models provide a promising approach for assessing carbon emissions reduction and can contribute to mitigating climate change

    SDF-Pack: Towards Compact Bin Packing with Signed-Distance-Field Minimization

    Full text link
    Robotic bin packing is very challenging, especially when considering practical needs such as object variety and packing compactness. This paper presents SDF-Pack, a new approach based on signed distance field (SDF) to model the geometric condition of objects in a container and compute the object placement locations and packing orders for achieving a more compact bin packing. Our method adopts a truncated SDF representation to localize the computation, and based on it, we formulate the SDF minimization heuristic to find optimized placements to compactly pack objects with the existing ones. To further improve space utilization, if the packing sequence is controllable, our method can suggest which object to be packed next. Experimental results on a large variety of everyday objects show that our method can consistently achieve higher packing compactness over 1,000 packing cases, enabling us to pack more objects into the container, compared with the existing heuristics under various packing settings

    Spatio-temporal evolution of human neural activity during visually cued hand movements

    Get PDF
    Making hand movements in response to visual cues is common in daily life. It has been well known that this process activates multiple areas in the brain, but how these neural activations progress across space and time remains largely unknown. Taking advantage of intracranial electroencephalographic (iEEG) recordings using depth and subdural electrodes from 36 human subjects using the same task, we applied single-trial and cross-trial analyses to high-frequency iEEG activity. The results show that the neural activation was widely distributed across the human brain both within and on the surface of the brain, and focused specifically on certain areas in the parietal, frontal, and occipital lobes, where parietal lobes present significant left lateralization on the activation. We also demonstrate temporal differences across these brain regions. Finally, we evaluated the degree to which the timing of activity within these regions was related to sensory or motor function. The findings of this study promote the understanding of task-related neural processing of the human brain, and may provide important insights for translational applications.</p

    Spatio-temporal evolution of human neural activity during visually cued hand movements

    Get PDF
    Making hand movements in response to visual cues is common in daily life. It has been well known that this process activates multiple areas in the brain, but how these neural activations progress across space and time remains largely unknown. Taking advantage of intracranial electroencephalographic (iEEG) recordings using depth and subdural electrodes from 36 human subjects using the same task, we applied single-trial and cross-trial analyses to high-frequency iEEG activity. The results show that the neural activation was widely distributed across the human brain both within and on the surface of the brain, and focused specifically on certain areas in the parietal, frontal, and occipital lobes, where parietal lobes present significant left lateralization on the activation. We also demonstrate temporal differences across these brain regions. Finally, we evaluated the degree to which the timing of activity within these regions was related to sensory or motor function. The findings of this study promote the understanding of task-related neural processing of the human brain, and may provide important insights for translational applications.</p

    Cluster Analysis Based Arc Detection in Pantograph-Catenary System

    No full text
    The pantograph-catenary system, which ensures the transmission of electrical energy, is a critical component of a high-speed electric multiple unit (EMU) train. The pantograph-catenary arc directly affects the power supply quality. The Chinese Railway High-speed (CRH) is equipped with a 6C system to obtain pantograph videos. However, it is difficult to automatically identify the arc image information from the vast amount of videos. This paper proposes an effective approach with which pantograph video can be separated into continuous frame-by-frame images. Because of the interference from the complex operating environment, it is unreasonable to directly use the arc parameters to detect the arc. An environmental segmentation algorithm is developed to eliminate the interference. Time series in the same environment is analyzed via cluster analysis technique (CAT) to find the abnormal points and simplified arc model to find arc events accurately. The proposed approach is tested with real pantograph video and performs well

    DataSheet1_Forest emissions reduction assessment from airborne LiDAR data using multiple machine learning approaches.docx

    No full text
    Objective: This study aims to evaluate the accuracy of different modeling methods and tree structural parameters extracted from airborne LiDAR for estimating carbon emissions reduction and assess their reliability as Certified Emission Reduction (CER) assessment techniques.Methods: LiDAR data was collected from an afforestation project in Beijing, China. Various modeling methods, including statistical regression and machine learning algorithms, were used to estimate biomass and carbon emissions reduction. The models were evaluated under two schemes: tree-species-specific modeling scheme (Scheme 1) and all-sample modeling scheme (Scheme 2) using cross-validation and compared with ground-based estimations and pre-estimated emission reductions.Results: Totally, the biomass estimation models in scheme 1 showed better accuracy than scheme 2. In scheme 1, The Random Forest (RF) and Cubist models achieved the highest prediction accuracy (R2 = 0.89, RMSE = 22.87 kg, CV RMSE = 52.00 kg), followed by GDBT and Cubist, with SVR and GAM performing the weakest. In scheme 2, Cubist model had the highest accuracy (R2 = 0.75, RMSE = 33.95 kg, CV RMSE = 36.05 kg), followed by RF and GBDT, with SVR and GAM performing the weakest. LiDAR-based estimates of carbon emissions reduction were closer to ground-based estimations and higher than pre-estimated values.Conclusion: This study demonstrates that LiDAR-based models using tree structural parameters can accurately assess carbon emissions reduction. The models outperformed traditional methods in terms of cost and accuracy. Considering tree species in the modeling process improved the accuracy of the models. LiDAR technology has the potential to be a reliable assessment technique for carbon emissions reduction in forestry projects. The pre-trained models can be used for multiple predictions, reducing the cost of carbon sink surveys. Overall, LiDAR-based models provide a promising approach for assessing carbon emissions reduction and can contribute to mitigating climate change.</p

    Evaluation of the Morphology and Osteogenic Potential of Titania-Based Electrospun Nanofibers

    Get PDF
    Submicron-scale titania-based ceramic fibers with various compositions have been prepared by electrospinning. The as-prepared nanofibers were heat-treated at 700°C for 3 h to obtain pure inorganic fiber meshes. The results show that the diameter and morphology of the nanofibers are affected by starting polymer concentration and sol-gel composition. The titania and titania-silica nanofibers had the average diameter about 100–300 nm. The crystal phase varied from high-crystallized rutile-anatase mixed crystal to low-crystallized anatase with adding the silica addition. The morphology and crystal phase were evaluated by SEM and XRD. Bone-marrow-derived mesenchymal stem cells were seeded on titania-silica 50/50 fiber meshes. Cell number and early differentiation marker expressions were analyzed, and the results indicated osteogenic potential of the titania-silica 50/50 fiber meshes

    Mechanism of Strength Formation of Unfired Bricks Composed of Aeolian Sand–Loess Composite

    No full text
    Aeolian sand and loess are both natural materials with poor engineering-related properties, and no research has been devoted to exploring aeolian sand–loess composite materials. In this study, we used aeolian sand and loess as the main raw materials to prepare unfired bricks by using the pressing method, along with cement, fly ash, and polypropylene fiber. The effects of different preparation conditions on the physical properties of the unfired bricks were investigated based on compressive strength, water absorption, and softening tests and a freeze–thaw cycle test combined with X-ray diffraction and scanning electron microscope analysis to determine the optimal mixing ratio for unfired bricks, and finally, the effects of fibers on the durability of the unfired bricks were investigated. The results reveal that the optimal mixing ratio of the masses of aeolian sand–loess –cement –fly ash–polypropylene fiber–alkali activator–water was 56.10:28.05:9.17:2.40:0.4:0.003:4.24 under a forming pressure of 20 MPa. The composite unfired bricks prepared had a compressive strength of 14.5 MPa at 14 d, with a rate of water absorption of 8.8%, coefficient of softening of 0.92, and rates of the losses of frozen strength and mass of 15.93% and 1.06%, respectively, where these satisfied the requirements of environmentally protective bricks with strength grades of MU10–MU15. During the curing process, silicate and sodium silicate gels tightly connected the particles of aeolian sand and the loess skeleton, and the spatial network formed by the addition of the fibers inhibited the deformation of soil and improved the strength of the unfired bricks
    corecore