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Abstract

Making hand movements in response to visual cues is common in daily life. It has been well known that

this process activates multiple areas in the brain, but how these neural activations progress across space and

time remains largely unknown. Taking advantage of intracranial electroencephalographic (iEEG) recordings

using depth and subdural electrodes from 36 human subjects using the same task, we applied single-trial and

cross-trial analyses to high-frequency iEEG activity. The results show that the neural activation was widely

distributed across the human brain both within and on the surface of the brain, and focused specifically

on certain areas in the parietal, frontal, and occipital lobes, where parietal lobes present significant left

lateralization on the activation. We also demonstrate temporal differences across these brain regions. Finally,

we evaluated the degree to which the timing of activity within these regions was related to sensory or motor

function. The findings of this study promote the understanding of task-related neural processing of the human

brain, and may provide important insights for translational applications.

Key words: intracranial electroencephalography, SEEG/ECoG, neural activation, spatio-temporal evolution, hand

movement

Introduction1

Imagine stopping the car in response to a red light. Producing2

such motor actions in response to visual cues is one of the most3

fundamental and essential functions in human daily life (Corbetta4

and Shulman, 2002; Botvinick and Cohen, 2014; Ledberg et al.,5

2007). Despite being a simple behavior, the spatio-temporal6

neural dynamics underlying such visuomotor processing are rather7

complex and have remained relatively unexplored (Pesaran et al.,8

2018; Bressler and Menon, 2010; Reichenbach et al., 2014).9

Therefore, uncovering the corresponding mechanisms of brain10

dynamics over spatial and temporal scales during this process is11

of critical importance for both human neuroscience and potential12

translational applications (Miller et al., 2014; Kopell et al., 2014;13

Hauschild et al., 2012; Franklin and Wolpert, 2011; Coon and 14

Schalk, 2016; Coon et al., 2016). 15

Addressing this question is greatly impeded by the lack 16

of a neuroimaging technique that can capture neural activity 17

with high spatial and temporal resolution across the brain. 18

Functional magnetic resonance imaging (fMRI) has excellent 19

spatial resolution and can identify functionally active networks 20

across the whole brain regions (Zalesky et al., 2014; Bassett et al., 21

2011; Oosterhof et al., 2012; Floyer-Lea and Matthews, 2004). 22

However, fMRI is also inherently constrained by its low temporal 23

resolution since blood-oxygen-level dependent (BOLD) signals are 24

unable to capture fast-changing neural activities across different 25

brain sites. Other non-invasive electrophysiologic approaches such 26

as electroencephalography (EEG) and magnetoencephalography 27

(MEG) provide high temporal resolution covering the entire 28

© The Author 2023. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 1
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surface of the brain and have been used for investigation of29

large-scale brain networks at the millisecond-level (Brovelli et al.,30

2015; Sakkalis, 2011; Cohen, 2017; Jerbi et al., 2007; Thurer31

et al., 2016; de Pasquale et al., 2010). However, these two32

techniques are still insufficient for characterizing the progression of33

neuronal activity in rich detail because of the limitations in spatial34

resolution (typically centimeter scales) (Lebedev and Nicolelis,35

2017; Cohen, 1968). Invasive technologies such as single-unit or36

multi-unit recordings acquired using implanted microelectrode37

arrays can capture spatially and temporally detailed images of38

activity near the recording sites. Many studies have used single-39

or multi-unit recordings to probe the neural dynamics under40

different visuomotor tasks within a specific brain region (Rao and41

Donoghue, 2014; Schall, 2015; Perel et al., 2015; Andersen and42

Cui, 2009; Ledberg et al., 2007; Kuang et al., 2016). However,43

this technique cannot readily simultaneously investigate the neural44

dynamics across larger cortical areas or subcortical regions.45

Intracranial electroencephalographic (iEEG) recordings using46

subdural electrodes (electrocorticography, ECoG) or depth47

electrodes (stereo-electroencephalograhy, SEEG) in patients with48

tumor or intractable epilepsy for pre-surgical monitoring sample49

neural activity at millimeter-spatial and millisecond-temporal50

resolution across relatively broad brain areas, and hence provide a51

tool that can be useful for both scientific research and translational52

applications (Parvizi and Kastner, 2018; Engel et al., 2005; Miller53

et al., 2010; Schalk et al., 2017a; Bartolomei et al., 2018; Bonini54

et al., 2014; Li et al., 2022). In addition, iEEG recordings have the55

ability to capture broadband gamma activity (i.e., activity at >6056

Hz), which has been demonstrated to be a reliable indicator of local57

neuronal activity (Nir et al., 2007; Buzsaki et al., 2012; Manning58

et al., 2009; Cardin et al., 2009; Ray et al., 2008; Lachaux et al.,59

2012). With these characteristics, iEEG broadband signals can60

chart the spatio-temporal evolution of the underlying task-related61

neurons among the recording sites (Miller et al., 2014; Takahashi62

et al., 2015; Coon and Schalk, 2016; Pei et al., 2011; Banerjee63

et al., 2010). While iEEG recordings inevitably have the limitation64

of sparse sampling, this limitation can be mitigated by recording65

across different human subjects using the same task. Thus, group66

analyses with iEEG recordings can provide information about67

general features of the large-scale spatio-temporal dynamics of the68

human brain during the common behaviors (Thiery et al., 2020;69

Betzel et al., 2019; Arnal et al., 2019; Avanzini et al., 2016; Schalk70

et al., 2017b; Conner et al., 2014; Posner et al., 2014; Keller et al.,71

2014; Wander et al., 2013; Lachaux et al., 2003).72

In this work, we acquired iEEG recordings from a relatively73

large number of human subjects with the same visually-cued motor74

task. Using these recordings, we answered critical questions about75

the spatio-temporal neural dynamics of the human brain during76

the task using methodologies that embrace the capabilities of the77

broadband gamma response of iEEG signals, both at the level78

of single trials as well as across trials. Specifically, in our paper,79

we first uncover the brain regions involved during a visuomotor80

process, quantify their degree of involvement in the task, and81

then determine the large-scale temporal activation sequence of82

different task-processing brain regions using a single-trial-based83

method. Finally, we document the possible functions of these84

brain regions, e.g., neuronal representations as being primarily85

‘sensory’ or ‘motor’ within the entire processing chain through the86

respective activation temporal profile across trials.87

Materials and Methods 88

Subjects, Data Recordings, and Tasks 89

We acquired iEEG data from 36 right-handed subjects (14 female, 90

22 male, age: 26.0± 6.2 years). The subjects were patients with 91

intractable epilepsy who had depth (SEEG) or subdural (ECoG) 92

electrodes implanted for pre-surgical assessment of their seizure 93

focus. 34 patients had SEEG electrodes and 2 patients had ECoG 94

electrodes (see also Supplementary Table 1). All configurations 95

of implantation were determined by clinical needs rather than 96

the needs of research. SEEG and ECoG signals were acquired 97

during the monitoring period in the hospital using a clinical 98

recording system (EEG-1200C, Nihon Kohden, Irvine, CA) with 99

sampling rates of 500-2000 Hz. All subjects participated in a 100

visually-cued finger and arm movements task that was previously 101

described in Li et al. (2018). In brief, in each trial, subjects were 102

instructed by a visual stimulus presented on an LCD screen to 103

rest for 4 s without any movement, before a visual cue appeared 104

for 1 s to inform the subjects of an upcoming movement. After 105

that, a picture of a gesture appeared for 5 s, and subjects 106

were instructed to repetitively perform that gesture as soon as 107

possible until the disappearance of the picture. For each subject, 108

we collected 100 trials in total (∼16.67 mins, Supplementary 109

Fig. 1). During the experiment, the subjects used the hand 110

(L=15, R=21) contralateral to the hemisphere with the majority of 111

the implanted electrodes. Electromyographic (EMG) signals were 112

recorded simultaneously (using the same amplifier and the same 113

sampling rate as the iEEG signals) from the extensor carpi radialis 114

muscle of the moving hand using two surface EMG electrodes. All 115

recorded electrophysiological data exhibiting pathological activity 116

were discarded from the present study. This study was approved 117

by the Ethics Committee of Huashan Hospital (Shanghai, China, 118

Approval ID: KY2019518) and was conducted in accordance with 119

the Declaration of Helsinki. All subjects gave informed consent for 120

this study. 121

Electrode Localization 122

The 36 subjects had a total of 4986 electrodes implanted; the 123

34 SEEG subjects had a total of 4536 depth electrode contacts 124

implanted (133±40 contacts and 10±3 electrode shaft on average, 125

11/9 subjects were implanted on the left/right hemisphere, 126

respectively, and 14 subjects were implanted bilaterally, see 127

Supplementary Table 1) and 2 ECoG subjects had a total of 450 128

subdural electrodes implanted (242/208 in the left hemisphere). 129

Each SEEG electrode shaft was 0.8 mm in diameter and contained 130

8-16 contacts along the shaft; each contact was 2 mm long with 131

a 3.5 mm center-to-center spacing distance (Huake Hengsheng 132

Medical Corp., Beijing, CN). ECoG electrodes were 1.8 mm in 133

diameter with a 5 mm inter-electrode distance (Huake Hengsheng 134

Medical Corp., Beijing, CN). The location of all electrodes was 135

identified in each individual brain model using pre-implant MRI 136

and post-implant CT images (Li et al., 2019). In addition, 137

we identified the anatomical location for each electrode using 138

Freesurfer’s cortical parcellation and subcortical segmentation 139

under the Desikan-Killiany atlas (Desikan et al., 2006; Fischl et al., 140

2002). Moreover, SEEG electrodes located at superficial white 141

matter (i.e., the white matter that is closest to the layer of divided 142

cortical regions, e.g., pre/post-central white matter, up to 36 143

regions) were identified as well using white matter segmentation 144

results from the Freesurfer (Salat et al., 2009; Guevara et al., 2017; 145

Oishi et al., 2008) and were used in this work, based on the findings 146
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that white matter also presented similar neural activation with147

the gray matter under tasks (Ding et al., 2018; Li et al., 2021,148

2022). The electrodes from the same anatomical regions (both149

cortical and subcortical) were identified and grouped for further150

analysis. Finally, we mapped the electrodes from each subject to a151

standard brain model (Montreal Neurological Institute (MNI)) for152

subsequent group analyses (Collins et al., 1994). All localization153

procedures were incorporated into the iEEGview toolbox (Li154

et al., 2019). The location and related anatomical information of155

electrodes from all 36 subjects were illustrated in Supplementary156

Fig. 2.157

Data Pre-Processing158

For all the obtained recordings in each subject, we first removed159

the channels whose line noise power at 50 Hz was larger160

than a subject-specific cut-off threshold from further analysis.161

Specifically, the line noise power for each channel (LN) was162

computed as the mean value of absolute line noise signals (filtered163

signals using a 2nd order IIR peak filter at 50 Hz, iirpeak in164

MATLAB) across the entire recording session and the cut-off165

threshold (Tcutoff ) for each subject was defined as the median line166

noise power across all channels within the subject plus 10 times167

of their median absolute deviation (Tcutoff = median(LNall) +168

10 · mad(LNall)). This procedure eliminated 48 (0.96%) out169

of the total of 4986 channels from further analyses (see also170

Supplementary Table 1). In the second step, all signals were171

subjected to a 50 Hz comb notch filter to remove line noise and172

its harmonics (iircomb in MATLAB with a quality (Q) factor173

of 25). We then high-pass filtered the signals at 0.5 Hz using174

a 6th order Butterworth filter to remove slow signal drifts and175

re-referenced the filtered signals using a Laplacian montage to176

improve the signal quality (Li et al., 2018; Liu et al., 2021).177

Finally, we extracted broadband gamma power (BGP) from the178

processed signals (Voytek et al., 2015; Ries et al., 2017). In detail,179

we band-pass filtered the re-referenced signals between 60-140 Hz180

using a 6th order Butterworth filter. We then applied the Hilbert181

transform (Hb) of the filtered signal s(t) to get the analytic signal182

(Eq. 1).183

s(t) + iHb[(s(t))] = a(t)eiφ(t) (1)184

where the a(t) and φ(t) were the instantaneous amplitude and185

instantaneous phase of the analytic signals respectively.186

The BGP was then computed as the square of the instantaneous187

amplitude, and the resulting signals were resampled to 200 Hz to188

improve computational efficiency. The results of this procedure189

were subjected to all subsequent analyses (termed as G(t) in this190

work, G(t) = |a(t)|2).191

For the purpose of subsequent analyses, EMG activity was192

processed separately to determine the onset of the subject’s193

movement during the task. To do this, we first band-pass filtered194

(55-145 Hz, 6th order Butterworth filter) the two EMG channels195

to extract the fast-changing neural activity and subtracted the196

results from each other. Then, for each trial, a joint detection197

algorithm was applied to identify the onset time of EMG activity.198

Specifically, we detected the first time point where absolute EMG199

activity exceeded 1.5 times the average absolute value of EMG200

activity in the motion period (Li et al., 2018). Additionally, we also201

detected the time point when the absolute value of EMG activity202

first time exceeded an adaptive threshold using the envelope of the203

processed EMG activity (Sedghamiz, 2018). The EMG onset time204

in each trial was defined as the earlier time point between these 205

two detections. As a result, the median EMG onset time across all 206

trials and all subjects was 565 ms. 207

For each trial, three time segments of interest that carried 208

the most representative neural information (i.e., baseline period, 209

task period, and detection period) were defined and adopted in 210

further analysis. Specifically, the baseline period in each trial was 211

defined as the 1 s time interval at the end of the rest period 212

before the onset of the cue, the task period was defined as the 213

first 2 s of the 5-s motion period, and the detection period was 214

defined as the time interval from the appearance of movement 215

cue to 400 ms after EMG activity onset. The task period was 216

used here for more robust detection of the channels presenting 217

task-related modulations (described below). The detection period 218

was selected for the neural activation detection (described below) 219

since it could cover the first complete visuomotor process at the 220

same time minimize the interference from the following continuous 221

movements (e.g., the second movement). 222

Detection of Task-related Channels 223

For each subject, we identified the channels that changed their 224

broadband gamma activity significantly during the task compared 225

to baseline using the same method introduced in our previous 226

work (Li et al., 2018). In brief, we first computed the median 227

values of BGP (G(t)) for the baseline and task periods in each 228

trial, respectively (100 trials for each period), and correlated 229

those 200 power values with the baseline/task labels (Spearman 230

correlation coefficient), thus producing a correlation value (r) 231

representing the observed relationship of power changes with the 232

movement states. We then performed a randomized permutation 233

test with 2500 repeats to generate a Gaussian distribution of 234

2500 surrogate r values, where the task/baseline labels within 235

each channel were randomly shuffled in each repeat and the 236

corresponding r value was computed (Schalk et al., 2007). The 237

computed channel was considered statistically significant when the 238

p value (Bonferroni corrected) of the observed r was within the 1st 239

percentile of the Gaussian distribution (Supplementary Fig. 3). 240

This process identified 1149 (23.0%) task-related channels from 241

all 4986 electrodes. Additionally, using the p value derived in the 242

permutation test, we also computed the correlation value between 243

each channel and the task (−log10(p), Schalk et al. (2007)). These 244

task-related channels were distributed across 31 different regions of 245

interest (ROIs, Fig. 1d). Finally, we obtained two ratios of task- 246

related neural activation for each of these ROIs by dividing the 247

number of task-related channels with either the total number of 248

channels in the same anatomical region or the total number of all 249

task-related channels from all subjects. 250

Detection of Neural Activation Time 251

The neural processing underpinning a visuomotor task is generally 252

very fast and may last for hundreds of milliseconds (Brovelli 253

et al., 2015; Rao and Donoghue, 2014). Therefore, uncovering the 254

spatio-temporal neural dynamics underlying such behavior tasks 255

asks for a high temporal resolution detection algorithm that can 256

accurately capture the neural population activity in a short time 257

duration. Detection using neural activity in each single trial has 258

been proven to have higher temporal precision than using trial- 259

averaged signals (Coon and Schalk, 2016; Perel et al., 2015; Coon 260

et al., 2016) and its importance in probing brain activities has 261

been addressed previously (Rey et al., 2015). 262
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In this work, we captured the neural activation time for263

each task-related channel using a single-trial detection algorithm264

that was described in Paraskevopoulou et al. (2021). In brief,265

the algorithm finds in each single trial the first peak exceeding266

a channel- and trial-specific amplitude threshold within the267

detection period. Specifically, the detection consisted of several268

steps. In the 1st step, we z-scored the BGP activities in each trial269

for each identified task-related channel (described above). In the270

2nd step, we applied the normalized BGP of each trial with a non-271

linear energy operator (NEO, ψ) to boost the signal-to-noise ratio272

(SNR) and facilitate the detection (Eq. 2, Koutsos et al. (2013);273

Maragos et al. (1993)). In the 3rd step, using the transformed274

BGP (ψ[G(t)]) of each channel in the baseline and detection275

period (Methods: Data Pre-processing), we then determined a276

channel-specific threshold using an optimization procedure (Eq. 3).277

More specifically, this procedure updated the threshold value from278

2 to 8 with 0.1 increments, and then selected the amplitude279

threshold maximizing the difference between the number of peaks280

exceeding the assigned threshold in the detection period and281

the baseline period. However, considering that the amplitude of282

ψ[G(t)] during the task in some active trials may not exceed283

such a channel-specific threshold, we additionally determined for284

these trials with undefined detections a trial-specific threshold by285

implementing another optimization procedure in the 4th step.286

The procedure varied the threshold value between 2 and the287

identified channel-specific threshold with 0.1 increments, and then288

selected the threshold that maximized the difference (indicated289

by the smallest p value, Wilcoxon rank sum test) between290

the amplitude distribution of time points comparing with the291

threshold (represented by logical vectors, e.g., 1 if the amplitude292

larger than the threshold, else 0) in the detection period and the293

baseline period. In case the maximal amplitude of ψ[G(t)] during294

the task in this trial exceeded the channel-specific threshold, the295

trial-specific threshold was the same as the identified channel-level296

threshold (3rd step). Specially, if the number of ψ[G(t)] exceeding297

the threshold from the baseline period was more than that from298

the detection period in a trial, no neural activation detection was299

defined in that location for that trial. With this channel- and300

trial-specific amplitude threshold, this procedure produced at most301

one neural activation detection in each trial and for each channel302

(Supplementary Fig. 3).303

ψ[G(t)] =

(
dG(t)

dt

)2

−G(t) ·
(
d2G(t)

dt2

)
(2)304

argmax f(ψz)
z=2,2.1...,8

:= dt(ψz)− db(ψz) (3)305

where ψz is the threshold, dt(ψz) and db(ψz) are the numbers306

of detection in the detection and baseline period, respectively.307

For each task-related channel, the time of detected neural308

activation was then normalized within each trial (e.g., divided309

by the EMG onset in the same trial) to facilitate further group310

analyses across subjects. After that, we fit the normalized311

activation time of each channel with a Gaussian model (Fig. 2c, f,312

i, and l, Eq. 4), producing for each channel a mean activation313

time value (µ) and a standard deviation of neural activation314

(σ) separately (Fig. 2, see also Supplementary Fig. 3 for the315

illustration of data processing in this section).316

f(x) = a ∗ e−
(x−u)2

σ2 (4) 317

where µ and σ are the mean value and the standard deviation 318

of the random variable X, a indicates the amplitude of the fitting 319

model (f(x)). 320

With these fitting results, we further excluded the noisy task- 321

related channels from the following analysis. Specifically, we 322

removed from the successful fittings whose σ value was larger 323

than a specific threshold, where the threshold was set as 0.80 324

after manual inspection across all channels. The operation was 325

based on the assumption that when the task was consistent, the 326

neural activation of task-related channels should be also relatively 327

stable (as measured by σ, Eq. 4). This process identified 564 328

channels with valid detection across all task-related channels; 329

we labeled these channels as informative channels in this work. 330

Finally, the informative channels from the same anatomical region 331

(see Methods: Electrode Localization) were grouped separately. 332

This step identified 27 regions from 31 different task-related 333

ROIs. Using these informative channels, we computed the average 334

activation time for each ROI group. The average activation time 335

for each ROI was calculated as the real estimated time lag after 336

stimulus onset for illustration purposes. To do that, we multiplied 337

the average normalized activation time of each ROI by the average 338

EMG onset (565 ms). During the calculation, only the ROIs whose 339

number of samples exceeded the median sample numbers (e.g., 340

n=10) of all ROIs were used in order to make the analysis more 341

robust. This process identified 16 of all 27 ROIs. We termed these 342

refined ROIs as informative ROIs (n=16) and used them for the 343

subsequent analysis. 344

Moreover, we also implemented another brain segmentation 345

method which divided the brain into 7 main areas (Del Percio 346

et al., 2019), including the occipital, parietal, frontal, temporal 347

and central area, insula cortex, and limbic system (Supplementary 348

Table 2). This operation produced a more macro assessment of the 349

spatio-temporal evolution of the neural activities within the human 350

brain under the task. Using the same criteria (e.g., the number of 351

samples for each area should be larger than 10), we identified 6 352

of such 7 areas and computed the corresponding mean activation 353

time for each area. 354

Activation Pattern Evaluation 355

The single-trial detection method makes it possible to evaluate 356

the activation pattern (that is, neural activation temporal profile 357

across trials) for each informative channel. In this section, we 358

first investigated whether there is a certain relationship between 359

the activation time of informative channels and their activation 360

pattern. Then, we evaluated for each informative channel whether 361

the timing of neural activation suggested that this channel 362

was more related to sensory processing or motor response. 363

Different analyses were performed respectively to answer these two 364

questions. 365

For the first question, we determined the correlation of each 366

informative channel with the response or stimulus by separately 367

correlating (using Pearson’s correlation) the raw detected neural 368

activation of each informative channel across all trials with either 369

the EMG onsets or stimulus onsets across all trials (the ‘response’ 370

here indicates the appearance of motor behaviors and is measured 371

with EMG onsets). This process generated two correlation values 372

(i.e., with response or stimulus) for each informative channel. 373

Together with the average normalized activation time of each 374
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informative channel, we separately analyzed the relationship375

between each two of these three measurements (i.e., one activation376

time and two correlation values) for all informative channels with377

a linear regression model.378

For the second question, we conducted two additional379

computations:380

1) We checked how the EMG onsets from single trials381

were correlated with the detected neural activation of different382

informative channels. The basic notion is that the neural383

activation of the channels that are related to the motor response384

should correlate with the EMG onsets. To investigate this, we385

implemented a random permutation procedure using the detected386

neural activation for each channel. In brief, we first computed387

Pearson’s correlation r for the detected neural activation of each388

channel and the EMG onsets from all trials. We then randomly389

shuffled the sequence of detected neural activation and computed390

the correlation with the EMG onsets for each repetition. This391

procedure was repeated 2500 times, thus, generating a distribution392

of surrogate r value and the subsequent p value for the observed393

r (Supplementary Fig. 3). The channel whose p value was smaller394

than the significance level (p < 0.05 after Bonferroni correction of395

channel numbers) was identified as response-locked channels (see396

Fig. 2h and 2k as examples);397

2) For the same channel, we then conducted another analysis to398

determine whether this channel was related to sensory processing399

(termed as the stimulus-locked channel in this work). Our400

assumption was that detected neural activation of the channels401

relating to the sensory processing should be time-locked to402

the stimulus onsets and have small variability on the time of403

neural activation across trials irrespective of the EMG onsets. To404

identify stimulus-locked channels, for each informative channel, we405

computed the standard deviation (v) of detected neural activation406

from a certain number of trials (e.g., 60), which were randomly407

selected from all trials. This setting was implemented to attenuate408

the influence of some noisy trials. Then, this process was repeated409

for 106 times and the average standard deviation (v̄) was obtained410

for each channel (Supplementary Fig. 3). After this, we then411

determined a threshold value to filter out the channels with412

large variations of detected neural activation. To do this, we413

concatenated all the detected neural activation from all valid414

channels together and conducted the same random selection415

process as the single channel to obtain an overall distribution for416

v. The threshold was then identified as the left boundary of 95%417

confidence interval from the distribution. The channel whose v̄ was418

smaller than the threshold was identified as the stimulus-locked419

channel in this work (see Fig. 2b and 2e as examples).420

The identified stimulus-locked and response-locked channels421

were then grouped based on their anatomical locations (16 ROIs,422

described above). For each ROI, the ratio of stimulus-locked and423

response-locked channels was calculated respectively by dividing424

either the number of identified stimulus-locked or the number of425

identified response-locked channels by the number of informative426

channels within that group.427

Results428

The Distribution of Neural Activation During The Task429

The recording electrodes from all subjects are distributed widely430

within the entire brain (Supplementary Fig. 2). Among these431

electrodes, we found that 1149 (23.0%) channels showed significant432

BGP changes during the task, and these channels are distributed 433

across multiple regions (n=31, Fig. 1d, Supplementary Table 434

2), covering cortical regions (central, frontal, parietal, occipital, 435

temporal area) and also deeper brain structures (e.g., insula cortex 436

(13.6% insula electrodes get activated) and limbic systems (such 437

as 36% electrodes in parahippocampus gyrus and 6.1% electrodes 438

in hippocampus)). Among these regions, several ones including 439

the precentral cortex (PRC, n=213, 18.5%), supramarginal gyrus 440

(SMG, n=115, 10.0%), postcentral cortex (i.e., gyrus and sulcus) 441

(POC, n=112, 9.7%), superior parietal cortex (SPC, n=105, 442

9.1%), superior frontal gyrus (SFG, n=83, 7.2%) and insula cortex 443

(ISC, n=51, 4.4%), lateral occipital cortex (LOC, n=46, 4.0%) 444

occupied over 60% of all task-related channels (Fig. 1d). 445

Overall, within each main brain region (Fig. 1d), several 446

regions, including the central area (e.g., 57.9% of electrodes in 447

PRC and 52.6% of electrodes in POC and 51.8% of electrodes 448

in paracentral cortex (PAC) were activated), parietal area (e.g., 449

57.7% of electrodes in SPC and 44.1% of electrodes in SMG were 450

activated), occipital area (e.g., 62.2% of electrodes in LOC, 57.6% 451

(n=19) of electrodes in pericalcarine cortex (PCC) and 29.0% 452

(n=18) of electrodes in lingual gyrus (LGG) were activated), and 453

frontal area (e.g., 33.9% of electrodes in SFG were activated), 454

correlated substantially with the task. Moreover, this phenomenon 455

was further confirmed by the average correlation value of each 456

region with the task (Fig. 1f), where the average correlation 457

value, listed in order from high to low, resulted for the central 458

area (n=354, 15.78±0.48 (mean±s.e.)), occipital area (n=87, 459

13.72±0.86), parietal area (n=279, 12.05±0.40), frontal area 460

(n=187, 11.30±0.53), insula cortex (n=55, 9.29±0.71), temporal 461

area (n=108, 9.15±0.44), and limbic system (n=51, 7.77±0.60), 462

respectively. In detail, the top five regions that had the highest 463

correlation value were LOC (17.20±1.24), POC (16.89±0.88), 464

PRC (15.60±0.60), SFG (14.64±0.98), SPC (13.22±0.71) in order, 465

where the correlation in LOC, POC and PRC were significantly 466

(p < 0.05, Wilcoxon rank sum test) higher than SPC and the 467

value in SPC was significantly (p < 0.05) higher than that in pars 468

opercularis (parsOPE, 10.03±1.03). The correlation distribution of 469

each electrode within the standard brain were shown in Fig. 1a-c. 470

In addition, we also observed significant left hemispheric 471

lateralization on activation in the parietal area, including both 472

SPC (number of task-related/nontask-related channels: L=72/21, 473

R=33/56, p < 0.001, χ2 test, FDR corrected) and inferior parietal 474

cortex (IPC, L=29/84, R=8/85, p < 0.05) during the task. 475

The Spatio-temporal Evolution of Neural Activation During 476

The Task 477

Among all task-related channels, we identified 564 informative 478

channels. The anatomical and spatial distribution of these 479

channels were shown in Fig. 1e and 3b-c, respectively. Four typical 480

samples of informative detections were illustrated in Fig. 2. These 481

channels, located at different anatomical regions, show differences 482

in their time of neural activation relative to the EMG onsets as 483

well (Fig. 2). Moreover, these four channels clearly present distinct 484

activation patterns (i.e., time-locked to the stimulus or response), 485

indicating the underlying different roles during the task. The 486

average temporal activation sequence of the identified informative 487

ROIs (n=16) in relation to the task processing was shown in 488

Fig. 3a. During the task, the activation of neurons roughly starts 489

from the occipital area and then spreads to the temporal area, 490

parietal area, and the limbic system, afterward, goes forward to the 491
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Fig. 1: The distribution of task-related electrodes across all subjects. a)/b)/c) The spatial distribution of task-related electrodes in the

MNI brain and their corresponding correlation value with the task (Left/Right/Top view respectively). The electrodes are presented with

balls. The color of each ball indicates the anatomical position of that electrode. We used the Desikan-Killiany atlas for brain segmentation.

The diameter of the balls corresponds to the correlation value with the task. d) The anatomical distribution for all the task-related

channels. For each anatomical label (ROI), the gray bar is calculated by dividing the number of task-related channels over the number of

channels having the same anatomical label across all subjects, whereas the blue bar is calculated by dividing the number of task-related

channels over the number of all task-related channels across all subjects. The anatomical label in the X-axis is encoded using the upper

color balls for better visualization. The color of each ball corresponds to the color scheme in (a/b/c). e) The anatomical distribution for

all the informative channels. The green and gray bars are in the same configuration as the blue and gray bars in (d) but use informative

electrodes instead. f) The average correlation value (−log10(p)) of each ROI across all subjects. The error bar indicates the standard

error. Asterisks denote the significance of the difference between the correlation value of the two ROIs (*, p < 0.05, Wilcoxon rank sum

test). The anatomical label in the X-axis is encoded using the upper color balls for better visualization. The color of each ball corresponds

to the color scheme in (a/b/c).

frontal area, and with the central area positioned at the final stages492

(Fig. 3a, see also Supplementary Fig. 4 for the temporal activation493

sequence of different ROIs from four typical single subjects).494

Specifically, LOC (n=42, 183±6 ms (mean±s.e.)) activates at the495

earliest stage on average after the stimulus onset, indicating the 496

start of visual stimulus processing. Then IPC activates (n=23, 497

229±17 ms), and such activation is significantly (p < 0.05, 498

Wilcoxon rank sum test) later than the LOC. Following that is 499
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Fig. 2: Illustration of detected neural activation from four typical channels of different subjects. a) The position of the electrode on

the original MRI image of each single subject. Red dots indicate electrodes. The text below indicates the anatomical position of each

electrode. b) Single-trial neural activation detection results for the electrode shown in (a). The color map represents the normalized

broadband gamma power (BGP) of all trials, where red color indicates higher BGP within each trial. Time zero indicates the onset

of the stimulus. The black dot indicates the detected neural activation for each trial. The dark gray dot (Sigmoid shape) indicates the

detected EMG onset of each trial. The purple line represents the average normalized BGP across all trials from that channel (the value

is magnified by 20 fold for visualization purposes and is shown on the right side of the Y-axis). The detected neural activation and EMG

onsets are presented here without normalization to give a better illustration of the difference in neural activation patterns. c) The average

normalized activation time for the electrode shown in (a). The brown bars indicate the distribution of detected neural activation (after

normalization, i.e., divided by the EMG onset in the same trial) from all trials shown in (b). The gray line indicates the curve-fitting

result using a Gaussian model. µ and σ indicate the mean value and standard deviation of the model. d-f)/g-i)/j-l) The detected neural

activation for the second/third/fourth channel (d/g/j). The configurations for all these subfigures are the same as (a/b/c). The X-axis

of (c/f/i/l) is scaled the same for comparison purposes. lh/rh: left/right hemisphere.

the activation from LGG (n=12, 247±30 ms), SPC (n=59, 251±17500

ms), inferior temporal gyrus (ITG, n=32, 252±10 ms), fusiform501

gyrus (FFG, n=14, 254±24 ms), precuneus cortex (PNC, n=10,502

291±32 ms), middle temporal gyrus (MTG, n=11, 291±15 ms),503

and rostral middle frontal gyrus (rMFG, n=16, 296±22 ms), where 504

the SPC activates significantly (p < 0.05) earlier than the MTG. 505

Then the neural activity goes from SMG (n=57, 308±15 ms) to 506

the frontal area, including caudal middle frontal gyrus (cMFG, 507
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Fig. 3: The spatio-temporal activation results during the task. a) The activation time for all the applicable regions of interest (ROIs)

during the task processing. For each ROI, the detected neural activation from all informative channels within the ROI was shown (blue

dots). Time zero indicates the onset of the stimulus. The activation time shown here is calculated by multiplying the normalized activation

time with the average EMG onset time (565 ms). The box indicates the 25 and 75 percentile of all the detected neural activation. The

blue dot indicates the mean value. The whiskers extend to the limits of all the detected neural activation within that ROI. The light gray

bar on the left indicates the percentage of informative channels belonging to each ROI within all informative channels. The digits on the

right side indicate the temporal activation sequence. Statistical analysis are conducted between ROIs (*, p < 0.05; **, p < 0.01; ***,

p < 0.001, Wilcoxon rank sum test). b)/c) Left/Top view of all the informative electrodes across all subjects in the MNI brain. All the

electrodes are projected to the left hemisphere for visualization purposes. The color of electrodes within each ROI is colored using the

average activation time of this ROI from (a). d) The average activation time for all the applicable 6 areas during the task processing. The

other configurations of this subfigure are the same as (a). e)/f) Left/Middle view of spatio-temporal activation sequence for the 15 ROIs

rendering on the flattened MNI brain. Results are shown with the cortical surface of the left hemisphere only. The digits correspond to

the results shown in (a). g)/h) Left/Middle view of spatio-temporal activation sequence for the 6 brain areas rendering on the flattened

MNI brain. Activation time is shown on the left hemisphere for illustration purposes. The digits correspond to the results shown in (d).

Electrodes located in the hippocampus are used for the computation of the activation time of the limbic system. The hippocampus is

not shown in this subfigure.

n=13, 312±25 ms) and parsOP (n=14, 330±23 ms) and SFG508

(n=41, 396±12 ms), where the parsOPE activates significantly509

(p < 0.001) earlier than the SFG. Activation is also detected in510

PAC (n=13, 360±35 ms) during this time segment. At the final511

step, the central area activates, where the PRC (n=99) activates512

on average at 424±11 ms and significantly (p < 0.001) earlier than513

POC (n=47, 510±18 ms). The spatio-temporal evolution of neural514

activity during the task was presented in Fig. 3 with the format515

of informative electrodes (3b-c) and cortical regions (3e-f).516

To give a more macro view on the footprints of neural517

processing during the task, we also computed the mean activation518

time for six different task-related cortical regions in a broader519

area (see Methods: Detection of Neural Activation Time). The520

temporal activation sequence for these broader areas was shown 521

in Fig. 3d (see also Supplementary Fig. 5 for the results from 522

four typical single subjects). As can be seen from the figure, the 523

occipital area (n=66) gets activated first with a 206±10 ms latency 524

on average after stimulus onset. Following this is the temporal area 525

(n=67), which activates at 256±9 ms after stimulus onset. The 526

occipital area activates significantly (p < 0.001, Wilcoxon rank 527

sum test) earlier than the temporal area. The mean activation time 528

after stimulus onset is 272±10 ms for the parietal area (n=149), 529

309±24 ms for the limbic system (n=17, parahippocampal gyrus 530

(n=9), hippocampus (n=6), posterior cingulate gyrus (n=2)). 531

Then the activation spreads to the front area at a latency of 532

347±10 ms (n=91), where the frontal area activates significantly 533



3.3 The Pattern of Neural Activation During The Task 9

Percentage / % 

  Response-Related Cortical Areas
LV MV

a

b

c

d

e f
100806040200

0 0.5 1 1.5
-0.2

0

0.2

0.4

0.6
 

0 0.5 1 1.5
0

0.2

0.4

0.6

0.8

1

-0.4 -0.2 0 0.2 0.4 0.6
0

0.2

0.4

0.6

0.8

1

lateraloccipital
inferiorparietal

lingual
superiorparietal
inferiortemporal

fusiform
precuneus

middletemporal
rostralmiddlefrontal

supramarginal
caudalmiddlefrontal

parsopercularis
paracentral

superiorfrontal
precentral

postcentral

k=0.25

r=0.44, p<0.001

k=-0.48
r=0.63
p<0.001

k=-0.63

r=0.47, p<0.001

  C
or

re
la

tio
n 

(S
tim

ul
us

)
  C

or
re

la
tio

n 
(S

tim
ul

us
)

  C
or

re
la

tio
n 

(R
es

po
ns

e)

     Normalized Activation Time

     Normalized Activation Time

  Correlation (Response)

Stimulus-Locked
Response-Locked

Fig. 4: The activation pattern evaluation results. a) The relationship between the activation time and its correlation with the response

onsets for each informative channel (see Methods: Activation Pattern Evaluation). Average normalized activation time is used here for

each informative channel, where time zero indicates the onset of the stimulus and time one indicates the onset of response (i.e., motor

behavior). Each colored dot indicates the result from one informative channel. The black line represents the fitted line generated using

the least square method. k indicates the slope of the fitted line. r and p indicate Pearson’s correlation values r and corresponding p

values, calculated between the fitted value and the real value. b) The relationship between the activation time and its correlation with

the stimulus onsets for each informative channel. The configurations for this subfigure are the same as (a). c) The relationship between

the correlation with response time and the correlation with stimulus time for each informative channel. The configurations for this

subfigure are the same as (a). d) Percentage of stimulus-locked and response-locked channels within each ROI. The ROIs are the same

as Fig. 3. e)/f) Left/Middle view of the distribution of response-locked channels on a flattened MNI brain. Results are shown with the

left hemisphere only. The darkness of the colored cortex indicates the percentage value shown in (d). Darker color indicates a higher

percentage.

(p < 0.001) later than the parietal area. At the final stage, the534

central area (n=159) gets activated with an average latency at535

444±10 ms, and such activation is significantly (p < 0.001) later536

than the frontal area. The temporal evolution of the cortical neural537

activities for these regions is shown in Fig. 3g and 3h.538

The Pattern of Neural Activation During The Task 539

To investigate the possible role of each informative electrode 540

with respect to task processing, we evaluated if there existed a 541

certain relationship between the activation time of these channels 542

and their correlation with stimulus and/or response onsets. Our 543

results show that the channels that activate earlier correlate more 544

with the stimulus onsets (k = −0.48, r = 0.63, p < 0.001, k: 545
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the slope of the fitted line, Fig. 4b), while the channels that546

activate later tend to correlate more with the response onsets547

(k = 0.25, r = 0.44, p < 0.001, Fig. 4a). Such correlation with the548

stimulus onsets and the value with the response onsets is reversely549

correlated (k = −0.63, r = 0.47, p < 0.001, Fig. 4c). This result550

indicates the existence of an at-least two-stage neural process551

during the task processing, where the first stage is characterized552

by a stimulus-locked activation pattern, indicating the sensory553

information processing; the other stage is characterized by a554

response-locked activation pattern, representing the generation of555

the motor response.556

We then evaluated the percentage of stimulus-locked and557

response-locked channels detected within each of the informative558

ROIs. The results show that wide areas of the entire brain,559

including most parts of the occipital area, the entire parietal area,560

parts of the temporal, frontal area, and even the central area,561

present stimulus-locked activation patterns (Fig. 4d). The current562

observation suggests the importance and complexity of sensory563

information processing prior to motor execution. More specifically,564

within these regions, the highest percentage of stimulus-locked565

channels was found in LOC, reaching 83.3%. Following that,566

the SPC (71.2%) was also a rich source of producing stimulus-567

locked activation. As the final stage of the task processing, the568

central area contained the lowest percentage of stimulus-locked569

channels (see also Supplementary Fig. 6 for the distribution570

of these areas). As a comparison, the central area, including571

POC (36.2%) and PRC (27.3%), has the highest percentage572

of response-locked channels. Besides, some parts of the frontal573

area (parsOPE (21.4%), SFG (14.6%), cMFG (7.7%)), a small574

portion of the parietal area (e.g., SMG (9%)) have also been575

found contain response-locked channels (Fig. 4d-f), indicating the576

possible function of these ROIs in relation to the generation of577

movement.578

Discussion579

In this work, using iEEG recordings from 4986 channels and 36580

human subjects, we investigated the spatio-temporal dynamics581

of human cortical activity during a visually-cued motor process.582

Specifically, we answered three relevant scientific questions by583

conducting group analyses with high-frequency neural activities.584

In detail, we first identified the distribution and strength of585

brain regions involved in task processing. We then extracted the586

temporal activation sequence of different ROIs during the task.587

Finally, we analyzed the possible role (e.g., relating to sensory588

information process or motor response) of each informative ROI589

involved in the processing chain.590

The Distribution of Neural Activation Within The Brain591

We found rather broad regions of neural activation during the592

current task. Within the task-related regions, the most active593

regions were observed in the central, parietal, and occipital area,594

the regions in the frontal area that are close to the PRC, and595

the inferior part of the temporal area, demonstrating the essential596

roles of these cortical areas in visuomotor processing. Importantly,597

besides the lateral direction, we also give an overview of the neural598

activation along the depth direction (Fig. 1). For instance, the599

deep brain structures, such as the insula cortex, parahippocampal600

gyrus, and hippocampus, have also been observed present task-601

related activation. The current observations further enrich the602

findings from previous ECoG (Keller et al., 2014) and MEG 603

studies (Brovelli et al., 2017). Moreover, our results also suggest 604

that the processing of a visuomotor task needs to recruit neural 605

networks spanning brain regions from both cortical and subcortical 606

levels. On this basis, revealing how neural activities interact 607

between cortical and subcortical regions will be interesting and 608

deserves further exploration in the following studies. 609

Apart from this, this work also gives additional spatial 610

information on the activation of the parietal area, since we 611

have found the existence of significant left lateralization on 612

the activation within this area during the current visuomotor 613

process. The present finding provides valuable implications for 614

future parietal area-based studies, especially the research adopting 615

neural activities from the parietal area for the brain-machine 616

interface purpose (Aflalo et al., 2015; Li et al., 2022; Wang 617

et al., 2020). More importantly, similar phenomena have been 618

also detected under other cognitive processes, including the tool- 619

action observation (Caruana et al., 2017), auditory and visual 620

stimulus processing (Molholm et al., 2006), and visual and 621

motor imagery aspects of hand shape encoding (Klaes et al., 622

2015). Moreover, such left-lateralized activation is reported to 623

be independent of handedness (Haaland et al., 2004; Vingerhoets 624

et al., 2012; Króliczak and Frey, 2009). Hence, all these 625

observations may together suggest the existence of the action 626

observation/execution network involving this area, which possibly 627

mediates the identification of the basic goal of the observed action 628

for both humans and monkeys (Rizzolatti et al., 2014). 629

The Spatio-temporal Evolution of Neural Activation During 630

The Task 631

In this work, we analyzed and presented the evolution of neural 632

activation across the human brain during a visuomotor task using 633

the neural recordings from all subjects (Fig. 3). The results 634

were further supported by the consistent results observed among 635

the partially-covered ROIs from the individual subjects (see 636

Supplementary Figs. 4 and 5). Roughly, early activation is shown 637

in the lateral part of the occipital area, the superior and posterior 638

part of the parietal area, and the posterior and inferior part of 639

the temporal area. Then, the activation spreads to the frontal 640

area and finally ends with the central area. It is also of interest 641

to compare our data with the results reported by Johnson et al. 642

(1996) and Nishitani and Hari (2000). The former authors studied 643

the activation pathway during a visually guided reach movement 644

with nonhuman primates’ single-neuron recordings. They found 645

the activation begins in the visual cortex and passes through the 646

posterior parietal cortex to the dorsal premotor cortex and then 647

to the primary motor cortex. The subsequent study reported the 648

temporal sequence of three ROIs during hand action imitation 649

using MEG recordings, where the visual cortex in the occipital 650

lobe first activates, and then the inferior frontal cortex activates 651

(parsOPE in this work), following that is the activation in the 652

primary motor area (PRC in this work). These results are in good 653

agreement with our ones. Meanwhile, distinct from these studies, 654

our work extends the results to more and wider regions of the 655

entire human brain, and hence can provide a comparatively more 656

intact overview of the ‘footprints’ of neural activity during the 657

task. It is worth noting that the spatio-temporal sequence reported 658

here should be interpreted carefully since the results are derived 659

from group analysis. Thus, our results cannot detect variations in 660

activation time among subregions of different ROIs or the same 661
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ROIs (Supplementary Fig. 4). At the same time, our results make662

it clear that there is a definitely consistent temporal sequence663

across these ROIs.664

Notably, although temporal activation sequence results show665

that POC activates lastly among all the informative ROIs666

(Fig. 3), the identified POC activation represents more than667

the somatosensory feedback after motor execution. Because the668

average activation time of POC (510±18 ms) in our work is slightly669

ahead of the movement onset (565 ms on average), indicating670

that some neurons in POC start firing prior to the movement671

onset (see also Supplementary Fig. 4a). Such early activation672

provides further evidence supporting the additional role of the673

somatosensory cortex in sensory information encoding that relates674

to the anticipation of movements (Wolpert et al., 1995; Sun et al.,675

2015).676

Besides, we have detected 13.6% (n=51) of electrodes located677

in the insula cortex presenting task-related activation, denoting678

the substantial involvement of this area during the visuomotor679

task. However, only a few of them are informative enough (n=8,680

395±44 ms) for the calculation of activation time. This may be681

because of the observation that most of the task-related channels682

in this area tend to activate in an irregular way (i.e., the onsets683

of activation are distributed sparsely across trials). The neural684

mechanism behind such neural activation patterns is not well685

understood yet. Consistently, Bartoli et al. (2018) also reported686

that the insula cortex exhibits an increase in broadband gamma687

activity under a button press task but such activation is less688

robust and later than the inferior frontal cortex (see also Fig. 3).689

Together, the current results imply that the insula cortex may690

play an indispensable role in sensory-motor processing, and the691

detailed function of this area still needs further investigation.692

The Possible Role of The ROIs During The Task693

Within the detected processing chain of the visuomotor task, on694

the average level, our data support the general understanding that695

the neurons that activate early tend to correlate more with the696

visual stimulus delivery, while the neurons holding late activation697

tend to associate more with the motor response (Fig. 4a-c).698

Furthermore, we also analyze the neuronal representations as699

being ‘sensory’ or ‘motor’ for each informative channel based on700

whether the neural activation is more closely linked to the onset701

of a stimulus or the initiation of a response (Fig. 4d). The earliest702

activation and highest percentage of stimulus-locked channels703

presented in our results demonstrate together the role of the lateral704

occipital cortex in the visual information processing during the705

task (Tallon-Baudry et al., 2004; Larsson and Heeger, 2006). Then,706

a high percentage of stimulus-locked channels in the parietal area707

and temporal area indicate as well the important function of these708

areas in visual information processing. Such visual representation709

gets weak when the process evolves to the frontal and central areas.710

Moreover, we have also detected obvious involvement from the711

parietal and frontal areas in the early stage of neural processing712

relating to the initiation of motor response. Previous reports have713

consistently suggested that motor function from the parietal area714

is related to the sensorimotor transformation (Andersen and Cui,715

2009), including hand trajectory information (Hauschild et al.,716

2012) and motor intentions, where the intention in the parietal717

area may be processed in relation to sensory predictions (Klaes718

et al., 2015). Whereas the motor function in the frontal area719

represents higher-level aspects of movement planning and decision720

making in relation to motor execution (Rizzolatti et al., 2014; 721

Miller and Cohen, 2001; Schall, 2015). On these bases, our results 722

further enhance the understanding of the critical sensorimotor- 723

related functions for these two areas (Andersen and Buneo, 2002; 724

Corbetta and Shulman, 2002). At the last stage of the neural 725

processing chain, the central area presents the highest percentage 726

of response-locked neural activity, indicating their function in 727

motor execution and somatosensory processing (Scott, 2004; 728

Lemon, 2008). Interestingly, within the central area, we also detect 729

a minority of channels in the PRC that present early stimulus- 730

locked activation (Figs. 4d and 3a). These findings promote the 731

understanding of the intact functions of this motor area, where the 732

view that the PRC is an integral part of a cue-to-action network so 733

as to make immediate responses to environmental stimulus (Rao 734

and Donoghue, 2014), may account for the observation. 735

Taken together, the neural processing results during the 736

visuomotor task revealed in this work likely support the opinion 737

that visual information is firstly processed and segregated along 738

two pathways (Figs. 1, 3 and 4), where the ventral stream 739

(occipito-temporal cortex) computes vision for perception and 740

the dorsal stream (occipito-parietal cortex) computes vision for 741

action (Culham and Valyear, 2006). The parietal and frontal 742

areas play an important role in the transformation of sensory 743

information to motor-related information. Specifically, the parietal 744

area participates in the early stage of such processing while the 745

frontal area tends to engage more in the motor execution. At 746

the final stage of motor execution, PRC generates motor signals 747

from an already highly processed sensory input and other internal 748

signals, following that is the production of the somatosensory 749

feedback from POC after motor execution (but also see discussion 750

above). Apart from this, we also conducted additional analyses 751

to further investigate whether the reaction time of a subject 752

is associated with the motor cortex only. To do this, we first 753

computed the average reaction time (computed as the trial- 754

averaged EMG onsets within each subject) and the average 755

raw activation time (without normalization) for all informative 756

channels within each informative ROI across subjects. Then, for 757

each informative ROI, we computed a Spearman correlation value 758

between the average reaction time and the average raw activation 759

time for all informative channels within this region. Finally, 760

the ROIs producing significant correlations (p < 0.05) were 761

identified. In this analysis, we find that, besides the central area, 762

the activation time from multiple regions, including temporal, 763

parietal, and frontal areas, also correlates significantly with the 764

reaction time of subjects for the current task (results not shown 765

here). This finding denotes that the reaction speed of a human is 766

not attributed to a single region (e.g., the well-known PRC), but 767

an entire task-related brain network including both sensory and 768

motor information processing. 769

Implications, Limitations, and Future Work 770

The current work presents the overall large-scale spatio-temporal 771

neural evolution of the human brain during a visuomotor task 772

and evaluates the possible functions across different ROIs. The 773

findings from this study enhance the understanding of the neural 774

responses under the task for neuroscientific studies. Moreover, 775

the findings also bring valuable insights for future movement- 776

related brain-machine interface research, which is also a focus of 777

this work (e.g., besides the traditional sensorimotor area, paying 778

additional attention to brain areas such as the frontal and parietal 779
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area for the decoding of movement parameters). There are also780

limitations in this work. For example, despite the comparatively781

large number of electrodes across the human brain in our study,782

the number of informative channels is still limited. In this point,783

the current analysis delivers an observation on most of the crucial784

regions involving the neural processing network under the current785

task, but may still not cover all of them. Besides, to make786

a robust group analysis, we combine the results of informative787

channels from both hemispheres during the computation of the788

average activation time of different ROIs, the generated result789

hence should be interpreted as a macro-level spatio-temporal790

evolution under the current task. Hence, recording from a larger791

number of channels will still be essential and valuable for further792

revealing the neural dynamics of the human brain in more detail.793

Notably, we have identified the neuronal representations as being794

‘sensory’ or ‘motor’ for informative channels from multiple ROIs.795

Meanwhile, we also detected a number of channels occupying796

positions that are intermediate between these two extremes797

and can not be described by either label (Fig. 4d, DiCarlo798

and Maunsell (2005)). These channels generally display multiple799

firing patterns or present irregular neural responses that do800

not fit the two categories analyzed here. Making additional801

assessments of the functions for these channels presenting irregular802

firing patterns using new experiments or analysis methods (e.g.,803

functional connectivity (Bastos and Schoffelen, 2015)) remains an804

important topic and deserves further investigation. Lastly, this805

study concentrates solely on the high-frequency component of806

the neural recordings, but some other simultaneous movement-807

relevant phenomena relating to the lower-frequency activity have808

been reported as well, such as the sensorimotor rhythm (SMR) in809

the mu and beta band and movement-related cortical potentials810

(MRCP) of the slow waves (Liu et al., 2020). What is largely811

unknown, is the relationship between these different measurements812

(e.g., the modulation of low-frequency activity to high-frequency813

ones) and the underlying mechanism between such relationship.814

In the future, it would be interesting to comprehensively address815

this question using a larger number of neural recordings.816
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Supplementary Table 1. Clinical profiles of all 36 subjects that participated in the study. Among these subjects, 34 were implanted with SEEG depth electrodes, and 2 (Sub.

32, Sub. 35) were implanted with ECoG grid electrodes. Abbreviations for this table: RS (Recording hemisphere), SR (Sampling rate), EL (Number of electrode shafts), CH

(Number of contacts), OH (Operating hand during the experiment), TH (Cut-off threshold during the line noise detection for each subject, see Sec. Data Pre-Processing of

Materials and Methods), BC (Bad Channel, i.e., Number of channels whose line noise power exceeds the cut-off threshold).

Sub ID Gender Age RS SR (Hz) EL CH OH TH (µV) BC

1 M 23 Left 1000 10 121 Right 32.76 2

2 M 33 Left 1000 15 180 Right 68.43 1

3 F 30 Right 1000 7 60 Left 24.17 0

4 M 26 Right 1000 13 178 Left 30.16 1

5 M 25 Right 1000 10 143 Left 41.63 0

6 F 17 Bilateral 1000 13 169 Left 3.24 2

7 F 28 Right 1000 9 114 Left 77.02 0

8 M 27 Left 2000 16 208 Right 36.67 0

9 M 15 Bilateral 500 13 194 Left 7.97 3

10 M 31 Right 500 6 94 Left 3.34 2

11 F 22 Left 2000 7 102 Right 2.66 0

12 M 19 Bilateral 2000 9 130 Left 5.68 0

13 F 30 Bilateral 2000 13 170 Right 4.56 0

14 M 31 Left 2000 10 144 Right 2.99 5

15 M 27 Bilateral 2000 10 144 Right 7.18 1

16 M 16 Bilateral 2000 13 137 Right 6.73 8

17 M 24 Right 1000 8 108 Left 10.27 1

18 F 30 Left 1000 9 118 Right 2.90 4

19 F 33 Left 2000 12 150 Right 10.94 2

20 F 23 Bilateral 2000 15 198 Right 6.40 3

21 F 23 Right 2000 10 130 Left 2.83 2

22 F 42 Left 2000 10 137 Right 8.29 1

23 M 33 Bilateral 2000 11 154 Right 14.34 1

24 M 15 Left 2000 8 110 Right 7.27 0

25 M 25 Bilateral 2000 8 108 Left 12.72 2

26 M 29 Bilateral 2000 5 72 Right 2.30 2

27 M 22 Bilateral 2000 6 56 Left 3.83 0

28 M 15 Right 2000 7 102 Left 34.06 1

29 M 26 Left 1000 10 136 Right 58.83 0

30 F 27 Bilateral 2000 10 117 Right 16.82 3

31 F 27 Bilateral 2000 6 64 Right 104.52 0

32 F 19 Left 2000 N/A 242 Right 1555.17 1

33 M 32 Bilateral 2000 9 126 Left 19.57 0

34 F 35 Right 2000 15 190 Left 29.25 0

35 M 26 Left 2000 N/A 208 Right 28.90 0

36 M 31 Left 2000 11 172 Right 34.65 0
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Supplementary Table 2. Information of brain regions reported in this study. Electrode number indicates the number of electrodes implanted in the listed brain region across all

36 subjects.

ID Brain Regions Abbreviation Electrode Number Groups

1 superior frontal gyrus SFG 245

Frontal Area

2 rostral middle frontal gyrus rMFG 311

3 caudal middle frontal gyrus cMFG 174

4 lateral orbitofrontal gyrus OFG 54

5 pars opercularis parsOPE 119

6 parstriangularis parsTRI 98

7 parsorbitalis parsORB 32

8 precentral cortex PRC 368

Central Area9 postcentral cortex POC 213

10 paracentral cortex PAC 56

1 superior parietal cortex SPC 182

Parietal Area
12 inferior parietal cortex IPC 206

13 supramarginal gyrus SMG 261

14 precuneus cortex PNC 183

15 superior temporal gyrus STG 390

Temporal Area

16 inferior temporal gyrus ITG 193

17 middle temporal gyrus MTG 325

18 transverse temporal gyrus TTG 43

19 fusiform gyrus FFG 102

20 banks of the superior temporal sulcus bankssts 53

21 lateral occipital cortex LOC 74

Occipital Area
22 pericalcarine cortex PCC 33

23 lingual gyrus LGG 62

24 cuneus cortex CNC 18

25 insula cortex ISC 374 Insula

26 parahippocampal gyrus PHG 50

Limbic System

27 posterior cingulate gyrus PCG 77

28 Hippocampus N/A 196

29 caudal anterior cingulate gyrus cACG 49

30 rostral anterior cingulate gyrus rACG 25

31 Amygdala N/A 85
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Supplementary Figure 1. Experiment protocol of the current study. Each subject performed five different hand or arm movements (see Cue). In each trial, one of five tasks was

randomly selected and displayed (Cue, the onset of movement cue was set as time 0 in this study). They performed each type of movement 20 times (5 s each, [0, 5] s). Before

the movement, each subject rested for 4 s ([-5, -1] s), and then a warning sign ([-1, 0] s) prompted the subject for movement initiation.
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Supplementary Figure 2. Electrodes localization results of all 36 subjects. a)/b)/c)/d) Right/Left/Frontal/Top view of all the electrodes projected to the standard Montreal

Neurological Institute (MNI) template. The electrodes (SEEG and ECoG) are shown with small balls. Different colors indicate different anatomical positions, where the red

indicates the gray matter, the blue indicates the white matter, the purple indicates the hippocampus, the dark green indicates the amygdala, the yellow indicates the putamen

and the gray indicates the other structures. LH/RH: Left/Right hemisphere.
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Supplementary Figure 3. The illustration of data processing in this work. The flow chart corresponds to the data processing from the section (Methods: Data Pre-Processing)

to the section (Methods: Activation Pattern Evaluation). Specifically, to identify the response-locked channels (left lower subfigure), we first computed Pearson’s correlation for

the detected neural activation of each informative channel and the EMG onsets across all trials. Then, the sequence of detected neural activation was randomly shuffled and the

correlation with the EMG onsets was computed again. This procedure was repeated 2500 times, thus, generating a distribution of surrogate correlation value (the histogram)

and the subsequent p value (vertical red line) for the observed correlation value. The channel whose p value was smaller than the significance level (p < 0.05 after Bonferroni

correction) was identified as the response-locked channel. To identify the stimulus-locked channels (right lower subfigure), for each informative channel, the standard deviation

of detected neural activation from randomly selected 60 trials was first computed. Then, this process was repeated for 106 times and the average standard deviation of these

repetitions (the histogram) was obtained for each channel. The channel whose average standard deviation is smaller than the threshold (vertical red line) is identified as the

stimulus-locked channel (see Methods: Activation Pattern Evaluation for more details).
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Supplementary Figure 4. The spatio-temporal activation results during the task from four typical subjects (Sub. 02 (a), Sub. 06 (b), Sub. 27 (c), Sub. 32 (d)). The results are

presented in groups based on the region of interest (ROI) where each informative electrode of this subject is located (same as Fig. 3a/e/f, see also Supplementary Table 2). a)

The neural activation time of different ROIs from a single subject (Sub. 02). The boxplot presents the distribution of neural activation time for all the samples detected within

each ROI. The colored dot indicates the result of each informative electrode. The vertical line within the boxplot indicates the median value. The right subfigure presents the

position of each informative electrode (colored the same as the left subfigure) in the MNI brain. The black dots denote all the electrodes implanted for this subject. b)/c)/d)

Results from the other typical subjects. Same configurations as a).
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Supplementary Figure 5. The spatio-temporal activation results during the task from four typical subjects (Sub. 02 (a), Sub. 08 (b), Sub. 09 (c), Sub. 34 (d)). The results are

presented in groups based on the broader brain area where each informative electrode of this subject is located (same as Fig. 3d/g/h, see also Supplementary Table 2). a) The

neural activation time of different broader brain areas from a single subject (Sub. 02). The boxplot in the left subfigure presents the distribution of neural activation time for all

the samples detected within each broader brain area. The colored dot indicates the result of each informative electrode. The vertical line within the boxplot indicates the median

value. The right subfigure presents the position of each informative electrode (colored the same as the left subfigure) in the MNI brain. The black dots denote all the electrodes

implanted for this subject. b)/c)/d) Results from the other typical subjects. Same configurations as a).

  Cortical Areas Presenting Stimulus-locked Activation Pattern
LV MV

a b

Supplementary Figure 6. Left(a)/Middle(b) view of the distribution of stimulus-locked channels on a flattened MNI brain. Results are shown with the left hemisphere only. The

darkness of the colored cortex indicates the percentage value shown in Fig.4d of the main content. Darker color indicates a higher percentage. See Methods: Activation Pattern

Evaluation for more details.
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