

Citation for published version:

Li, G, Jiang, S, Meng, J, Wu, Z, Jiang, H, Fan, Z, Hu, J, Sheng, X, Zhang, D, Schalk, G, Chen, L & Zhu, X 2023, 'Spatio-temporal evolution of human neural activity during visually cued hand movements', Cerebral cortex (New York, N.Y. : 1991), vol. 33, no. 17, pp. 9764-9777.<https://doi.org/10.1093/cercor/bhad242>

DOI: [10.1093/cercor/bhad242](https://doi.org/10.1093/cercor/bhad242)

Publication date: 2023

Document Version Peer reviewed version

[Link to publication](https://researchportal.bath.ac.uk/en/publications/d2b6dca0-e12d-4b1f-b269-c494d36f6572)

This is a pre-copyedited, author-produced version of an article accepted for publication in Cerebral cortex following peer review. The version of record Guangye Li, Shize Jiang, Jianjun Meng, Zehan Wu, Haiteng Jiang, Zhen Fan, Jie Hu, Xinjun Sheng, Dingguo Zhang, Gerwin Schalk, Liang Chen, Xiangyang Zhu, Spatio-temporal evolution of human neural activity during visually cued hand movements, Cerebral Cortex, Volume 33, Issue 17, 1 September 2023, Pages 9764–9777 is available online at: https://doi.org/10.1093/cercor/bhad242

University of Bath

Alternative formats If you require this document in an alternative format, please contact: openaccess@bath.ac.uk

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Spatio-temporal Evolution of Human Neural Activity During Visually-cued Hand Movements

Guangye Li,^{1,†} Shize Jiang,^{2,†} Jianjun Meng,¹ Zehan Wu,² Haiteng Jiang,^{3,4} Zhen Fan,² Jie Hu,² Xinjun Sheng,¹ Dingguo Zhang,⁶ Gerwin Schalk,^{5,2} Liang Chen^{2,∗,§} and Xiangyang Zhu^{1,∗,§}

 $^{\rm 1}$ Institute of Robotics, Shanghai Jiao Tong University, Shanghai, China, $^{\rm 2}$ Department of Neurosurgery of Huashan Hospital, Department of Neurosurgery of Huashan Hospital, Shanghai, China, ³Department of Neurobiology, Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, China, ⁴MOE Frontier Science Center for Brain Science & Brain-Machine Integration, Zhejiang University, Hangzhou, China, ⁵Frontier Lab for Applied Neurotechnology, Tianqiao and Chrissy Chen Institute, Shanghai, China and ⁶Department of Electronic and Electrical Engineering, University of Bath, Bath, UK

 \dagger Contribute to this paper equally and should be considered as co-first authors. \S Co-corresponding authorship.[∗]Corresponding author:hschenliang@fudan.edu.cn (L. Chen), mexyzhu@sjtu.edu.cn (XY. Zhu).

Abstract

Making hand movements in response to visual cues is common in daily life. It has been well known that this process activates multiple areas in the brain, but how these neural activations progress across space and time remains largely unknown. Taking advantage of intracranial electroencephalographic (iEEG) recordings using depth and subdural electrodes from 36 human subjects using the same task, we applied single-trial and cross-trial analyses to high-frequency iEEG activity. The results show that the neural activation was widely distributed across the human brain both within and on the surface of the brain, and focused specifically on certain areas in the parietal, frontal, and occipital lobes, where parietal lobes present significant left lateralization on the activation. We also demonstrate temporal differences across these brain regions. Finally, we evaluated the degree to which the timing of activity within these regions was related to sensory or motor function. The findings of this study promote the understanding of task-related neural processing of the human brain, and may provide important insights for translational applications.

Key words: intracranial electroencephalography, SEEG/ECoG, neural activation, spatio-temporal evolution, hand movement

1 Introduction

 Imagine stopping the car in response to a red light. Producing such motor actions in response to visual cues is one of the most [f](#page-13-0)undamental and essential functions in human daily life [\(Corbetta](#page-13-0) [and Shulman, 2002;](#page-13-0) [Botvinick and Cohen, 2014;](#page-12-0) [Ledberg et al.,](#page-14-0) [2007\)](#page-14-0). Despite being a simple behavior, the spatio-temporal neural dynamics underlying such visuomotor processing are rather complex and have remained relatively unexplored [\(Pesaran et al.,](#page-14-1) [2018;](#page-14-1) [Bressler and Menon, 2010;](#page-12-1) [Reichenbach et al., 2014\)](#page-15-0). Therefore, uncovering the corresponding mechanisms of brain dynamics over spatial and temporal scales during this process is of critical importance for both human neuroscience and potential translational applications [\(Miller et al., 2014;](#page-14-2) [Kopell et al., 2014;](#page-13-1) [Hauschild et al., 2012;](#page-13-2) [Franklin and Wolpert, 2011;](#page-13-3) [Coon and](#page-13-4) ¹⁴ [Schalk, 2016;](#page-13-4) [Coon et al., 2016\)](#page-13-5). 15

Addressing this question is greatly impeded by the lack ¹⁶ of a neuroimaging technique that can capture neural activity ¹⁷ with high spatial and temporal resolution across the brain. 18 Functional magnetic resonance imaging (fMRI) has excellent 19 spatial resolution and can identify functionally active networks 20 across the whole brain regions [\(Zalesky et al., 2014;](#page-15-1) [Bassett et al.,](#page-12-2) ²¹ [2011;](#page-12-2) [Oosterhof et al., 2012;](#page-14-3) [Floyer-Lea and Matthews, 2004\)](#page-13-6). ²² However, fMRI is also inherently constrained by its low temporal ²³ resolution since blood-oxygen-level dependent (BOLD) signals are ²⁴ unable to capture fast-changing neural activities across different 25 brain sites. Other non-invasive electrophysiologic approaches such ²⁶ as electroencephalography (EEG) and magnetoencephalography ²⁷ (MEG) provide high temporal resolution covering the entire ²⁸ surface of the brain and have been used for investigation of large-scale brain networks at the millisecond-level [\(Brovelli et al.,](#page-13-7) [2015;](#page-13-7) [Sakkalis, 2011;](#page-15-2) [Cohen, 2017;](#page-13-8) [Jerbi et al., 2007;](#page-13-9) [Thurer](#page-15-3) [et al., 2016;](#page-15-3) [de Pasquale et al., 2010\)](#page-14-4). However, these two techniques are still insufficient for characterizing the progression of neuronal activity in rich detail because of the limitations in spatial resolution (typically centimeter scales) [\(Lebedev and Nicolelis,](#page-14-5) [2017;](#page-14-5) [Cohen, 1968\)](#page-13-10). Invasive technologies such as single-unit or multi-unit recordings acquired using implanted microelectrode arrays can capture spatially and temporally detailed images of activity near the recording sites. Many studies have used single- or multi-unit recordings to probe the neural dynamics under [d](#page-14-6)ifferent visuomotor tasks within a specific brain region [\(Rao and](#page-14-6) [Donoghue, 2014;](#page-14-6) [Schall, 2015;](#page-15-4) [Perel et al., 2015;](#page-14-7) [Andersen and](#page-12-3) [Cui, 2009;](#page-12-3) [Ledberg et al., 2007;](#page-14-0) [Kuang et al., 2016\)](#page-13-11). However, this technique cannot readily simultaneously investigate the neural dynamics across larger cortical areas or subcortical regions.

 Intracranial electroencephalographic (iEEG) recordings using subdural electrodes (electrocorticography, ECoG) or depth electrodes (stereo-electroencephalograhy, SEEG) in patients with tumor or intractable epilepsy for pre-surgical monitoring sample neural activity at millimeter-spatial and millisecond-temporal resolution across relatively broad brain areas, and hence provide a tool that can be useful for both scientific research and translational [a](#page-14-9)pplications [\(Parvizi and Kastner, 2018;](#page-14-8) [Engel et al., 2005;](#page-13-12) [Miller](#page-14-9) [et al., 2010;](#page-14-9) [Schalk et al., 2017a;](#page-15-5) [Bartolomei et al., 2018;](#page-12-4) [Bonini](#page-12-5) [et al., 2014;](#page-12-5) [Li et al., 2022\)](#page-14-10). In addition, iEEG recordings have the ability to capture broadband gamma activity (i.e., activity at >60 Hz), which has been demonstrated to be a reliable indicator of local [n](#page-14-12)euronal activity [\(Nir et al., 2007;](#page-14-11) [Buzsaki et al., 2012;](#page-13-13) [Manning](#page-14-12) [et al., 2009;](#page-14-12) [Cardin et al., 2009;](#page-13-14) [Ray et al., 2008;](#page-14-13) [Lachaux et al.,](#page-14-14) [2012\)](#page-14-14). With these characteristics, iEEG broadband signals can chart the spatio-temporal evolution of the underlying task-related [n](#page-15-6)eurons among the recording sites [\(Miller et al., 2014;](#page-14-2) [Takahashi](#page-15-6) [et al., 2015;](#page-15-6) [Coon and Schalk, 2016;](#page-13-4) [Pei et al., 2011;](#page-14-15) [Banerjee](#page-12-6) [et al., 2010\)](#page-12-6). While iEEG recordings inevitably have the limitation of sparse sampling, this limitation can be mitigated by recording across different human subjects using the same task. Thus, group analyses with iEEG recordings can provide information about general features of the large-scale spatio-temporal dynamics of the human brain during the common behaviors [\(Thiery et al., 2020;](#page-15-7) [Betzel et al., 2019;](#page-12-7) [Arnal et al., 2019;](#page-12-8) [Avanzini et al., 2016;](#page-12-9) [Schalk](#page-15-8) [et al., 2017b;](#page-15-8) [Conner et al., 2014;](#page-13-15) [Posner et al., 2014;](#page-14-16) [Keller et al.,](#page-13-16) [2014;](#page-13-16) [Wander et al., 2013;](#page-15-9) [Lachaux et al., 2003\)](#page-14-17).

 In this work, we acquired iEEG recordings from a relatively large number of human subjects with the same visually-cued motor task. Using these recordings, we answered critical questions about the spatio-temporal neural dynamics of the human brain during the task using methodologies that embrace the capabilities of the broadband gamma response of iEEG signals, both at the level of single trials as well as across trials. Specifically, in our paper, we first uncover the brain regions involved during a visuomotor process, quantify their degree of involvement in the task, and then determine the large-scale temporal activation sequence of different task-processing brain regions using a single-trial-based method. Finally, we document the possible functions of these brain regions, e.g., neuronal representations as being primarily 'sensory' or 'motor' within the entire processing chain through the respective activation temporal profile across trials.

Materials and Methods 888

Subjects, Data Recordings, and Tasks 89

We acquired iEEG data from 36 right-handed subjects (14 female, 90 22 male, age: 26.0 ± 6.2 years). The subjects were patients with 91 intractable epilepsy who had depth (SEEG) or subdural (ECoG) ⁹² electrodes implanted for pre-surgical assessment of their seizure 93 focus. 34 patients had SEEG electrodes and 2 patients had ECoG ⁹⁴ electrodes (see also Supplementary Table 1). All configurations 95 of implantation were determined by clinical needs rather than ⁹⁶ the needs of research. SEEG and ECoG signals were acquired ⁹⁷ during the monitoring period in the hospital using a clinical ⁹⁸ recording system (EEG-1200C, Nihon Kohden, Irvine, CA) with ⁹⁹ sampling rates of 500-2000 Hz. All subjects participated in a ¹⁰⁰ visually-cued finger and arm movements task that was previously ¹⁰¹ described in [Li et al.](#page-14-18) [\(2018\)](#page-14-18). In brief, in each trial, subjects were 102 instructed by a visual stimulus presented on an LCD screen to ¹⁰³ rest for 4 s without any movement, before a visual cue appeared 104 for 1 s to inform the subjects of an upcoming movement. After 105 that, a picture of a gesture appeared for 5 s, and subjects ¹⁰⁶ were instructed to repetitively perform that gesture as soon as 107 possible until the disappearance of the picture. For each subject, ¹⁰⁸ we collected 100 trials in total (∼16.67 mins, Supplementary ¹⁰⁹ Fig. 1). During the experiment, the subjects used the hand 110 $(L=15, R=21)$ contralateral to the hemisphere with the majority of 111 the implanted electrodes. Electromyographic (EMG) signals were 112 recorded simultaneously (using the same amplifier and the same 113 sampling rate as the iEEG signals) from the extensor carpi radialis 114 muscle of the moving hand using two surface EMG electrodes. All 115 recorded electrophysiological data exhibiting pathological activity ¹¹⁶ were discarded from the present study. This study was approved 117 by the Ethics Committee of Huashan Hospital (Shanghai, China, ¹¹⁸ Approval ID: KY2019518) and was conducted in accordance with 119 the Declaration of Helsinki. All subjects gave informed consent for ¹²⁰ this study. 121

The 36 subjects had a total of 4986 electrodes implanted; the ¹²³ 34 SEEG subjects had a total of 4536 depth electrode contacts ¹²⁴ implanted $(133\pm40 \text{ contacts and } 10\pm3 \text{ electrode shaft on average}, \quad 125$ 11/9 subjects were implanted on the left/right hemisphere, ¹²⁶ respectively, and 14 subjects were implanted bilaterally, see ¹²⁷ Supplementary Table 1) and 2 ECoG subjects had a total of 450 128 subdural electrodes implanted $(242/208$ in the left hemisphere). 129 Each SEEG electrode shaft was 0.8 mm in diameter and contained 130 8-16 contacts along the shaft; each contact was 2 mm long with ¹³¹ a 3.5 mm center-to-center spacing distance (Huake Hengsheng ¹³² Medical Corp., Beijing, CN). ECoG electrodes were 1.8 mm in 133 diameter with a 5 mm inter-electrode distance (Huake Hengsheng ¹³⁴ Medical Corp., Beijing, CN). The location of all electrodes was ¹³⁵ identified in each individual brain model using pre-implant MRI ¹³⁶ and post-implant CT images [\(Li et al., 2019\)](#page-14-19). In addition, ¹³⁷ we identified the anatomical location for each electrode using ¹³⁸ Freesurfer's cortical parcellation and subcortical segmentation ¹³⁹ under the Desikan-Killiany atlas [\(Desikan et al., 2006;](#page-13-17) [Fischl et al.,](#page-13-18) ¹⁴⁰ [2002\)](#page-13-18). Moreover, SEEG electrodes located at superficial white ¹⁴¹ matter (i.e., the white matter that is closest to the layer of divided 142 cortical regions, e.g., pre/post-central white matter, up to 36 ¹⁴³ regions) were identified as well using white matter segmentation ¹⁴⁴ results from the Freesurfer [\(Salat et al., 2009;](#page-15-10) [Guevara et al., 2017;](#page-13-19) ¹⁴⁵ [Oishi et al., 2008\)](#page-14-20) and were used in this work, based on the findings ¹⁴⁶ that white matter also presented similar neural activation with the gray matter under tasks [\(Ding et al., 2018;](#page-13-20) [Li et al., 2021,](#page-14-21) [2022\)](#page-14-10). The electrodes from the same anatomical regions (both cortical and subcortical) were identified and grouped for further analysis. Finally, we mapped the electrodes from each subject to a standard brain model (Montreal Neurological Institute (MNI)) for subsequent group analyses [\(Collins et al., 1994\)](#page-13-21). All localization [p](#page-14-19)rocedures were incorporated into the iEEGview toolbox [\(Li](#page-14-19) [et al., 2019\)](#page-14-19). The location and related anatomical information of electrodes from all 36 subjects were illustrated in Supplementary ¹⁵⁷ Fig. 2.

158 Data Pre-Processing

 For all the obtained recordings in each subject, we first removed the channels whose line noise power at 50 Hz was larger than a subject-specific cut-off threshold from further analysis. 162 Specifically, the line noise power for each channel (LN) was computed as the mean value of absolute line noise signals (filtered signals using a 2^{nd} order IIR peak filter at 50 Hz, *iirpeak* in MATLAB) across the entire recording session and the cut-off 166 threshold (T_{cutoff}) for each subject was defined as the median line noise power across all channels within the subject plus 10 times 168 of their median absolute deviation $(T_{cutoff} = median(LN_{all}) +$ 169 10 · $mad(LN_{all})$). This procedure eliminated 48 (0.96%) out of the total of 4986 channels from further analyses (see also Supplementary Table 1). In the second step, all signals were subjected to a 50 Hz comb notch filter to remove line noise and its harmonics (iircomb in MATLAB with a quality (Q) factor of 25). We then high-pass filtered the signals at 0.5 Hz using a 6^{th} order Butterworth filter to remove slow signal drifts and re-referenced the filtered signals using a Laplacian montage to improve the signal quality [\(Li et al., 2018;](#page-14-18) [Liu et al., 2021\)](#page-14-22). Finally, we extracted broadband gamma power (BGP) from the processed signals [\(Voytek et al., 2015;](#page-15-11) [Ries et al., 2017\)](#page-15-12). In detail, we band-pass filtered the re-referenced signals between 60-140 Hz 181 using a 6^{th} order Butterworth filter. We then applied the Hilbert 182 transform (Hb) of the filtered signal $s(t)$ to get the analytic signal ¹⁸³ (Eq. [1\)](#page-3-0).

$$
^{184}
$$

$$
s(t) + iHb[(s(t))] = a(t)e^{i\varphi(t)} \tag{1}
$$

185 where the $a(t)$ and $\varphi(t)$ were the instantaneous amplitude and ¹⁸⁶ instantaneous phase of the analytic signals respectively.

¹⁸⁷ The BGP was then computed as the square of the instantaneous ¹⁸⁸ amplitude, and the resulting signals were resampled to 200 Hz to ¹⁸⁹ improve computational efficiency. The results of this procedure 190 were subjected to all subsequent analyses (termed as $G(t)$ in this 191 work, $G(t) = |a(t)|^2$.

 For the purpose of subsequent analyses, EMG activity was processed separately to determine the onset of the subject's movement during the task. To do this, we first band-pass filtered 195 (55-145 Hz, 6^{th} order Butterworth filter) the two EMG channels to extract the fast-changing neural activity and subtracted the results from each other. Then, for each trial, a joint detection algorithm was applied to identify the onset time of EMG activity. Specifically, we detected the first time point where absolute EMG activity exceeded 1.5 times the average absolute value of EMG activity in the motion period [\(Li et al., 2018\)](#page-14-18). Additionally, we also detected the time point when the absolute value of EMG activity first time exceeded an adaptive threshold using the envelope of the processed EMG activity [\(Sedghamiz, 2018\)](#page-15-13). The EMG onset time in each trial was defined as the earlier time point between these ²⁰⁵ two detections. As a result, the median EMG onset time across all ²⁰⁶ trials and all subjects was 565 ms. ²⁰⁷

For each trial, three time segments of interest that carried ²⁰⁸ the most representative neural information (i.e., baseline period, ²⁰⁹ task period, and detection period) were defined and adopted in ²¹⁰ further analysis. Specifically, the baseline period in each trial was ²¹¹ defined as the 1 s time interval at the end of the rest period ²¹² before the onset of the cue, the task period was defined as the ²¹³ first 2 s of the 5-s motion period, and the detection period was ²¹⁴ defined as the time interval from the appearance of movement ²¹⁵ cue to 400 ms after EMG activity onset. The task period was ²¹⁶ used here for more robust detection of the channels presenting 217 task-related modulations (described below). The detection period ²¹⁸ was selected for the neural activation detection (described below) 219 since it could cover the first complete visuomotor process at the ²²⁰ same time minimize the interference from the following continuous 221 movements (e.g., the second movement). 222

Detection of Task-related Channels 223

For each subject, we identified the channels that changed their ²²⁴ broadband gamma activity significantly during the task compared ²²⁵ to baseline using the same method introduced in our previous ²²⁶ work [\(Li et al., 2018\)](#page-14-18). In brief, we first computed the median ²²⁷ values of BGP $(G(t))$ for the baseline and task periods in each 228 trial, respectively (100 trials for each period), and correlated ²²⁹ those 200 power values with the baseline/task labels (Spearman ²³⁰ correlation coefficient), thus producing a correlation value (r) 231 representing the observed relationship of power changes with the ²³² movement states. We then performed a randomized permutation ²³³ test with 2500 repeats to generate a Gaussian distribution of ²³⁴ 2500 surrogate r values, where the task/baseline labels within 235 each channel were randomly shuffled in each repeat and the ²³⁶ corresponding r value was computed [\(Schalk et al., 2007\)](#page-15-14). The 237 computed channel was considered statistically significant when the ²³⁸ p value (Bonferroni corrected) of the observed r was within the 1st 239 percentile of the Gaussian distribution (Supplementary Fig. 3). ²⁴⁰ This process identified 1149 (23.0%) task-related channels from ²⁴¹ all 4986 electrodes. Additionally, using the p value derived in the 242 permutation test, we also computed the correlation value between ²⁴³ each channel and the task $(-log_{10}(p))$, [Schalk et al.](#page-15-14) [\(2007\)](#page-15-14)). These 244 task-related channels were distributed across 31 different regions of ²⁴⁵ interest (ROIs, Fig. [1d](#page-6-0)). Finally, we obtained two ratios of task- ²⁴⁶ related neural activation for each of these ROIs by dividing the ²⁴⁷ number of task-related channels with either the total number of ²⁴⁸ channels in the same anatomical region or the total number of all ²⁴⁹ task-related channels from all subjects. ²⁵⁰

Detection of Neural Activation Time

The neural processing underpinning a visuomotor task is generally 252 [v](#page-13-7)ery fast and may last for hundreds of milliseconds [\(Brovelli](#page-13-7) ²⁵³ [et al., 2015;](#page-13-7) [Rao and Donoghue, 2014\)](#page-14-6). Therefore, uncovering the ²⁵⁴ spatio-temporal neural dynamics underlying such behavior tasks ²⁵⁵ asks for a high temporal resolution detection algorithm that can ²⁵⁶ accurately capture the neural population activity in a short time ²⁵⁷ duration. Detection using neural activity in each single trial has ²⁵⁸ been proven to have higher temporal precision than using trial- ²⁵⁹ [a](#page-13-5)veraged signals [\(Coon and Schalk, 2016;](#page-13-4) [Perel et al., 2015;](#page-14-7) [Coon](#page-13-5) ²⁶⁰ [et al., 2016\)](#page-13-5) and its importance in probing brain activities has ²⁶¹ been addressed previously [\(Rey et al., 2015\)](#page-15-15). ²⁶²

 In this work, we captured the neural activation time for each task-related channel using a single-trial detection algorithm that was described in [Paraskevopoulou et al.](#page-14-23) [\(2021\)](#page-14-23). In brief, the algorithm finds in each single trial the first peak exceeding a channel- and trial-specific amplitude threshold within the detection period. Specifically, the detection consisted of several steps. In the 1^{st} step, we z-scored the BGP activities in each trial for each identified task-related channel (described above). In the 2^{nd} step, we applied the normalized BGP of each trial with a non-272 linear energy operator (NEO, ψ) to boost the signal-to-noise ratio (SNR) and facilitate the detection (Eq. [2,](#page-4-0) [Koutsos et al.](#page-13-22) [\(2013\)](#page-13-22); [Maragos et al.](#page-14-24) [\(1993\)](#page-14-24)). In the 3^{rd} step, using the transformed 275 BGP $(\psi[G(t)])$ of each channel in the baseline and detection period (Methods: Data Pre-processing), we then determined a channel-specific threshold using an optimization procedure (Eq. [3\)](#page-4-1). More specifically, this procedure updated the threshold value from 2 to 8 with 0.1 increments, and then selected the amplitude threshold maximizing the difference between the number of peaks exceeding the assigned threshold in the detection period and the baseline period. However, considering that the amplitude of $\psi[G(t)]$ during the task in some active trials may not exceed such a channel-specific threshold, we additionally determined for these trials with undefined detections a trial-specific threshold by implementing another optimization procedure in the 4^{th} step. The procedure varied the threshold value between 2 and the identified channel-specific threshold with 0.1 increments, and then selected the threshold that maximized the difference (indicated by the smallest p value, Wilcoxon rank sum test) between the amplitude distribution of time points comparing with the threshold (represented by logical vectors, e.g., 1 if the amplitude larger than the threshold, else 0) in the detection period and the 294 baseline period. In case the maximal amplitude of $\psi[G(t)]$ during the task in this trial exceeded the channel-specific threshold, the trial-specific threshold was the same as the identified channel-level threshold $(3^{rd}$ step). Specially, if the number of $\psi[G(t)]$ exceeding the threshold from the baseline period was more than that from the detection period in a trial, no neural activation detection was defined in that location for that trial. With this channel- and trial-specific amplitude threshold, this procedure produced at most one neural activation detection in each trial and for each channel (Supplementary Fig. 3).

$$
\psi[G(t)] = \left(\frac{dG(t)}{dt}\right)^2 - G(t) \cdot \left(\frac{d^2G(t)}{dt^2}\right) \tag{2}
$$

$$
\arg \max_{z=2,2,1,...,8} f(\psi_z) := dt(\psi_z) - db(\psi_z)
$$
 (3)

where ψ_z is the threshold, $dt(\psi_z)$ and $db(\psi_z)$ are the numbers ³⁰⁷ of detection in the detection and baseline period, respectively.

 For each task-related channel, the time of detected neural activation was then normalized within each trial (e.g., divided by the EMG onset in the same trial) to facilitate further group analyses across subjects. After that, we fit the normalized activation time of each channel with a Gaussian model (Fig. [2c](#page-7-0), f, i, and l, Eq. [4\)](#page-4-2), producing for each channel a mean activation time value (μ) and a standard deviation of neural activation (σ) separately (Fig. [2,](#page-7-0) see also Supplementary Fig. 3 for the illustration of data processing in this section).

$$
f(x) = a * e^{-\frac{(x-u)^2}{\sigma^2}} \tag{4}
$$

where μ and σ are the mean value and the standard deviation 318 of the random variable X , a indicates the amplitude of the fitting 319 model $(f(x))$.

With these fitting results, we further excluded the noisy task- ³²¹ related channels from the following analysis. Specifically, we ³²² removed from the successful fittings whose σ value was larger 323 than a specific threshold, where the threshold was set as 0.80 ³²⁴ after manual inspection across all channels. The operation was ³²⁵ based on the assumption that when the task was consistent, the ³²⁶ neural activation of task-related channels should be also relatively 327 stable (as measured by σ , Eq. [4\)](#page-4-2). This process identified 564 328 channels with valid detection across all task-related channels; ³²⁹ we labeled these channels as informative channels in this work. ³³⁰ Finally, the informative channels from the same anatomical region 331 (see Methods: Electrode Localization) were grouped separately. ³³² This step identified 27 regions from 31 different task-related ³³³ ROIs. Using these informative channels, we computed the average 334 activation time for each ROI group. The average activation time ³³⁵ for each ROI was calculated as the real estimated time lag after ³³⁶ stimulus onset for illustration purposes. To do that, we multiplied 337 the average normalized activation time of each ROI by the average 338 EMG onset (565 ms). During the calculation, only the ROIs whose 339 number of samples exceeded the median sample numbers (e.g., ³⁴⁰ n=10) of all ROIs were used in order to make the analysis more ³⁴¹ robust. This process identified 16 of all 27 ROIs. We termed these ³⁴² refined ROIs as informative ROIs $(n=16)$ and used them for the 343 subsequent analysis. 344

Moreover, we also implemented another brain segmentation ³⁴⁵ [m](#page-13-23)ethod which divided the brain into 7 main areas [\(Del Percio](#page-13-23) ³⁴⁶ [et al., 2019\)](#page-13-23), including the occipital, parietal, frontal, temporal ³⁴⁷ and central area, insula cortex, and limbic system (Supplementary ³⁴⁸ Table 2). This operation produced a more macro assessment of the ³⁴⁹ spatio-temporal evolution of the neural activities within the human 350 brain under the task. Using the same criteria (e.g., the number of ³⁵¹ samples for each area should be larger than 10), we identified $6\$ 352 of such 7 areas and computed the corresponding mean activation ³⁵³ time for each area. 354

Activation Pattern Evaluation 355

The single-trial detection method makes it possible to evaluate ³⁵⁶ the activation pattern (that is, neural activation temporal profile 357 across trials) for each informative channel. In this section, we ³⁵⁸ first investigated whether there is a certain relationship between ³⁵⁹ the activation time of informative channels and their activation ³⁶⁰ pattern. Then, we evaluated for each informative channel whether 361 the timing of neural activation suggested that this channel ³⁶² was more related to sensory processing or motor response. ³⁶³ Different analyses were performed respectively to answer these two ³⁶⁴

For the first question, we determined the correlation of each ³⁶⁶ informative channel with the response or stimulus by separately ³⁶⁷ correlating (using Pearson's correlation) the raw detected neural ³⁶⁸ activation of each informative channel across all trials with either ³⁶⁹ the EMG onsets or stimulus onsets across all trials (the 'response' ³⁷⁰ here indicates the appearance of motor behaviors and is measured 371 with EMG onsets). This process generated two correlation values 372 (i.e., with response or stimulus) for each informative channel. ³⁷³ Together with the average normalized activation time of each ³⁷⁴

questions. 365

 informative channel, we separately analyzed the relationship between each two of these three measurements (i.e., one activation time and two correlation values) for all informative channels with a linear regression model.

³⁷⁹ For the second question, we conducted two additional ³⁸⁰ computations:

 1) We checked how the EMG onsets from single trials were correlated with the detected neural activation of different informative channels. The basic notion is that the neural activation of the channels that are related to the motor response should correlate with the EMG onsets. To investigate this, we implemented a random permutation procedure using the detected neural activation for each channel. In brief, we first computed Pearson's correlation r for the detected neural activation of each channel and the EMG onsets from all trials. We then randomly shuffled the sequence of detected neural activation and computed the correlation with the EMG onsets for each repetition. This procedure was repeated 2500 times, thus, generating a distribution of surrogate r value and the subsequent p value for the observed r (Supplementary Fig. 3). The channel whose p value was smaller 395 than the significance level $(p < 0.05$ after Bonferroni correction of channel numbers) was identified as response-locked channels (see Fig. [2h](#page-7-0) and [2k](#page-7-0) as examples);

 2) For the same channel, we then conducted another analysis to determine whether this channel was related to sensory processing (termed as the stimulus-locked channel in this work). Our assumption was that detected neural activation of the channels relating to the sensory processing should be time-locked to the stimulus onsets and have small variability on the time of neural activation across trials irrespective of the EMG onsets. To identify stimulus-locked channels, for each informative channel, we 406 computed the standard deviation (v) of detected neural activation from a certain number of trials (e.g., 60), which were randomly selected from all trials. This setting was implemented to attenuate the influence of some noisy trials. Then, this process was repeated 410 for 10^6 times and the average standard deviation (\bar{v}) was obtained for each channel (Supplementary Fig. 3). After this, we then determined a threshold value to filter out the channels with large variations of detected neural activation. To do this, we concatenated all the detected neural activation from all valid channels together and conducted the same random selection process as the single channel to obtain an overall distribution for v. The threshold was then identified as the left boundary of 95% 418 confidence interval from the distribution. The channel whose \bar{v} was smaller than the threshold was identified as the stimulus-locked channel in this work (see Fig. [2b](#page-7-0) and [2e](#page-7-0) as examples).

 The identified stimulus-locked and response-locked channels were then grouped based on their anatomical locations (16 ROIs, described above). For each ROI, the ratio of stimulus-locked and response-locked channels was calculated respectively by dividing either the number of identified stimulus-locked or the number of identified response-locked channels by the number of informative channels within that group.

⁴²⁸ Results

429 The Distribution of Neural Activation During The Task

⁴³⁰ The recording electrodes from all subjects are distributed widely ⁴³¹ within the entire brain (Supplementary Fig. 2). Among these 432 electrodes, we found that 1149 (23.0%) channels showed significant BGP changes during the task, and these channels are distributed 433 across multiple regions (n=31, Fig. [1d](#page-6-0), Supplementary Table ⁴³⁴ 2), covering cortical regions (central, frontal, parietal, occipital, ⁴³⁵ temporal area) and also deeper brain structures (e.g., insula cortex ⁴³⁶ (13.6% insula electrodes get activated) and limbic systems (such ⁴³⁷ as 36% electrodes in parahippocampus gyrus and 6.1% electrodes ⁴³⁸ in hippocampus)). Among these regions, several ones including ⁴³⁹ the precentral cortex (PRC, $n=213, 18.5\%$), supramarginal gyrus 440 $(SMG, n=115, 10.0\%)$, postcentral cortex (i.e., gyrus and sulcus) 441 $(POC, n=112, 9.7\%)$, superior parietal cortex $(SPC, n=105, 442)$ 9.1%), superior frontal gyrus (SFG, $n=83, 7.2\%$) and insula cortex 443 (ISC, n=51, 4.4%), lateral occipital cortex $(LOC, n=46, 4.0\%)$ 444 occupied over 60% of all task-related channels (Fig. [1d](#page-6-0)). ⁴⁴⁵

Overall, within each main brain region (Fig. [1d](#page-6-0)), several ⁴⁴⁶ regions, including the central area (e.g., 57.9% of electrodes in ⁴⁴⁷ PRC and 52.6% of electrodes in POC and 51.8% of electrodes 448 in paracentral cortex (PAC) were activated), parietal area (e.g., ⁴⁴⁹ 57.7% of electrodes in SPC and 44.1% of electrodes in SMG were ⁴⁵⁰ activated), occipital area (e.g., 62.2% of electrodes in LOC, 57.6% ⁴⁵¹ $(n=19)$ of electrodes in pericalcarine cortex (PCC) and 29.0% 452 $(n=18)$ of electrodes in lingual gyrus (LGG) were activated), and 453 frontal area (e.g., 33.9% of electrodes in SFG were activated), ⁴⁵⁴ correlated substantially with the task. Moreover, this phenomenon ⁴⁵⁵ was further confirmed by the average correlation value of each ⁴⁵⁶ region with the task (Fig. [1f](#page-6-0)), where the average correlation ⁴⁵⁷ value, listed in order from high to low, resulted for the central ⁴⁵⁸ area (n=354, 15.78±0.48 (mean±s.e.)), occipital area (n=87, ⁴⁵⁹ 13.72±0.86), parietal area (n=279, 12.05±0.40), frontal area ⁴⁶⁰ $(n=187, 11.30\pm0.53)$, insula cortex $(n=55, 9.29\pm0.71)$, temporal 461 area (n=108, 9.15 \pm 0.44), and limbic system (n=51, 7.77 \pm 0.60), 462 respectively. In detail, the top five regions that had the highest ⁴⁶³ correlation value were LOC (17.20 ± 1.24) , POC (16.89 ± 0.88) , 464 PRC (15.60 ± 0.60) , SFG (14.64 ± 0.98) , SPC (13.22 ± 0.71) in order, 465 where the correlation in LOC, POC and PRC were significantly 466 $(p < 0.05$, Wilcoxon rank sum test) higher than SPC and the 467 value in SPC was significantly $(p < 0.05)$ higher than that in pars 468 opercularis (parsOPE, 10.03±1.03). The correlation distribution of ⁴⁶⁹ each electrode within the standard brain were shown in Fig. [1a](#page-6-0)-c. ⁴⁷⁰

In addition, we also observed significant left hemispheric ⁴⁷¹ lateralization on activation in the parietal area, including both ⁴⁷² SPC (number of task-related/nontask-related channels: L=72/21, ⁴⁷³ $R=33/56$, $p < 0.001$, χ^2 test, FDR corrected) and inferior parietal 474 cortex (IPC, L=29/84, R=8/85, $p < 0.05$) during the task.

The Spatio-temporal Evolution of Neural Activation During 476 The Task 477

Among all task-related channels, we identified 564 informative 478 channels. The anatomical and spatial distribution of these ⁴⁷⁹ channels were shown in Fig. [1e](#page-6-0) and [3b](#page-8-0)-c, respectively. Four typical ⁴⁸⁰ samples of informative detections were illustrated in Fig. [2.](#page-7-0) These 481 channels, located at different anatomical regions, show differences ⁴⁸² in their time of neural activation relative to the EMG onsets as ⁴⁸³ well (Fig. [2\)](#page-7-0). Moreover, these four channels clearly present distinct 484 activation patterns (i.e., time-locked to the stimulus or response), ⁴⁸⁵ indicating the underlying different roles during the task. The ⁴⁸⁶ average temporal activation sequence of the identified informative 487 ROIs (n=16) in relation to the task processing was shown in ⁴⁸⁸ Fig. [3a](#page-8-0). During the task, the activation of neurons roughly starts ⁴⁸⁹ from the occipital area and then spreads to the temporal area, ⁴⁹⁰ parietal area, and the limbic system, afterward, goes forward to the ⁴⁹¹

Fig. 1: The distribution of task-related electrodes across all subjects. $a)/b/c$ The spatial distribution of task-related electrodes in the MNI brain and their corresponding correlation value with the task (Left/Right/Top view respectively). The electrodes are presented with balls. The color of each ball indicates the anatomical position of that electrode. We used the Desikan-Killiany atlas for brain segmentation. The diameter of the balls corresponds to the correlation value with the task. d) The anatomical distribution for all the task-related channels. For each anatomical label (ROI), the gray bar is calculated by dividing the number of task-related channels over the number of channels having the same anatomical label across all subjects, whereas the blue bar is calculated by dividing the number of task-related channels over the number of all task-related channels across all subjects. The anatomical label in the X-axis is encoded using the upper color balls for better visualization. The color of each ball corresponds to the color scheme in $(a/b/c)$. e) The anatomical distribution for all the informative channels. The green and gray bars are in the same configuration as the blue and gray bars in (d) but use informative electrodes instead. f) The average correlation value $(-log_{10}(p))$ of each ROI across all subjects. The error bar indicates the standard error. Asterisks denote the significance of the difference between the correlation value of the two ROIs $(*, p < 0.05,$ Wilcoxon rank sum test). The anatomical label in the X-axis is encoded using the upper color balls for better visualization. The color of each ball corresponds to the color scheme in $(a/b/c)$.

 frontal area, and with the central area positioned at the final stages (Fig. [3a](#page-8-0), see also Supplementary Fig. 4 for the temporal activation sequence of different ROIs from four typical single subjects). 495 Specifically, LOC ($n=42$, 183 ± 6 ms (mean \pm s.e.)) activates at the earliest stage on average after the stimulus onset, indicating the ⁴⁹⁶ start of visual stimulus processing. Then IPC activates $(n=23, 497)$ 229 ± 17 ms), and such activation is significantly ($p < 0.05$, 498 Wilcoxon rank sum test) later than the LOC. Following that is $\frac{499}{2}$

Fig. 2: Illustration of detected neural activation from four typical channels of different subjects. a) The position of the electrode on the original MRI image of each single subject. Red dots indicate electrodes. The text below indicates the anatomical position of each electrode. b) Single-trial neural activation detection results for the electrode shown in (a). The color map represents the normalized broadband gamma power (BGP) of all trials, where red color indicates higher BGP within each trial. Time zero indicates the onset of the stimulus. The black dot indicates the detected neural activation for each trial. The dark gray dot (Sigmoid shape) indicates the detected EMG onset of each trial. The purple line represents the average normalized BGP across all trials from that channel (the value is magnified by 20 fold for visualization purposes and is shown on the right side of the Y-axis). The detected neural activation and EMG onsets are presented here without normalization to give a better illustration of the difference in neural activation patterns. c) The average normalized activation time for the electrode shown in (a). The brown bars indicate the distribution of detected neural activation (after normalization, i.e., divided by the EMG onset in the same trial) from all trials shown in (b). The gray line indicates the curve-fitting result using a Gaussian model. μ and σ indicate the mean value and standard deviation of the model. **d-f**)/g-i)/j-l) The detected neural activation for the second/third/fourth channel $(d/g/j)$. The configurations for all these subfigures are the same as $(a/b/c)$. The X-axis of $(c/f)/l$ is scaled the same for comparison purposes. lh/rh: left/right hemisphere.

500 the activation from LGG (n=12, 247 \pm 30 ms), SPC (n=59, 251 \pm 17 501 ms), inferior temporal gyrus (ITG, $n=32$, 252 ± 10 ms), fusiform

⁵⁰² gyrus (FFG, n=14, 254±24 ms), precuneus cortex (PNC, n=10,

503 291 \pm 32 ms), middle temporal gyrus (MTG, n=11, 291 \pm 15 ms),

and rostral middle frontal gyrus (rMFG, $n=16$, 296 ± 22 ms), where 504 the SPC activates significantly $(p < 0.05)$ earlier than the MTG. 505 Then the neural activity goes from SMG $(n=57, 308\pm15 \text{ ms})$ to 506 the frontal area, including caudal middle frontal gyrus (cMFG, ⁵⁰⁷

Fig. 3: The spatio-temporal activation results during the task. a) The activation time for all the applicable regions of interest (ROIs) during the task processing. For each ROI, the detected neural activation from all informative channels within the ROI was shown (blue dots). Time zero indicates the onset of the stimulus. The activation time shown here is calculated by multiplying the normalized activation time with the average EMG onset time (565 ms). The box indicates the 25 and 75 percentile of all the detected neural activation. The blue dot indicates the mean value. The whiskers extend to the limits of all the detected neural activation within that ROI. The light gray bar on the left indicates the percentage of informative channels belonging to each ROI within all informative channels. The digits on the right side indicate the temporal activation sequence. Statistical analysis are conducted between ROIs (*, p < 0.05; **, p < 0.01; ***, $p < 0.001$, Wilcoxon rank sum test). b)/c) Left/Top view of all the informative electrodes across all subjects in the MNI brain. All the electrodes are projected to the left hemisphere for visualization purposes. The color of electrodes within each ROI is colored using the average activation time of this ROI from (a) . d) The average activation time for all the applicable 6 areas during the task processing. The other configurations of this subfigure are the same as (a). \mathbf{e}/f) Left/Middle view of spatio-temporal activation sequence for the 15 ROIs rendering on the flattened MNI brain. Results are shown with the cortical surface of the left hemisphere only. The digits correspond to the results shown in (a). g/h Left/Middle view of spatio-temporal activation sequence for the 6 brain areas rendering on the flattened MNI brain. Activation time is shown on the left hemisphere for illustration purposes. The digits correspond to the results shown in (d). Electrodes located in the hippocampus are used for the computation of the activation time of the limbic system. The hippocampus is not shown in this subfigure.

 n=13, 312±25 ms) and parsOP (n=14, 330±23 ms) and SFG (n=41, 396 \pm 12 ms), where the parsOPE activates significantly ($p < 0.001$) earlier than the SFG. Activation is also detected in PAC (n=13, 360 \pm 35 ms) during this time segment. At the final step, the central area activates, where the PRC (n=99) activates 513 on average at 424 ± 11 ms and significantly $(p < 0.001)$ earlier than POC (n=47, 510±18 ms). The spatio-temporal evolution of neural activity during the task was presented in Fig. [3](#page-8-0) with the format of informative electrodes [\(3b](#page-8-0)-c) and cortical regions [\(3e](#page-8-0)-f).

 To give a more macro view on the footprints of neural processing during the task, we also computed the mean activation time for six different task-related cortical regions in a broader area (see Methods: Detection of Neural Activation Time). The temporal activation sequence for these broader areas was shown ⁵²¹ in Fig. [3d](#page-8-0) (see also Supplementary Fig. 5 for the results from ⁵²² four typical single subjects). As can be seen from the figure, the ⁵²³ occipital area (n=66) gets activated first with a 206 ± 10 ms latency 524 on average after stimulus onset. Following this is the temporal area ⁵²⁵ $(n=67)$, which activates at 256 ± 9 ms after stimulus onset. The 526 occipital area activates significantly $(p < 0.001,$ Wilcoxon rank 527 sum test) earlier than the temporal area. The mean activation time 528 after stimulus onset is 272 ± 10 ms for the parietal area $(n=149)$, 529 309 ± 24 ms for the limbic system (n=17, parahippocampal gyrus 530 $(n=9)$, hippocampus $(n=6)$, posterior cingulate gyrus $(n=2)$). 531 Then the activation spreads to the front area at a latency of ⁵³² 347 ± 10 ms (n=91), where the frontal area activates significantly 533

Fig. 4: The activation pattern evaluation results. a) The relationship between the activation time and its correlation with the response onsets for each informative channel (see Methods: Activation Pattern Evaluation). Average normalized activation time is used here for each informative channel, where time zero indicates the onset of the stimulus and time one indicates the onset of response (i.e., motor behavior). Each colored dot indicates the result from one informative channel. The black line represents the fitted line generated using the least square method. k indicates the slope of the fitted line. r and p indicate Pearson's correlation values r and corresponding p values, calculated between the fitted value and the real value. b) The relationship between the activation time and its correlation with the stimulus onsets for each informative channel. The configurations for this subfigure are the same as (a). c) The relationship between the correlation with response time and the correlation with stimulus time for each informative channel. The configurations for this subfigure are the same as (a). d) Percentage of stimulus-locked and response-locked channels within each ROI. The ROIs are the same as Fig. [3.](#page-8-0) e/f Left/Middle view of the distribution of response-locked channels on a flattened MNI brain. Results are shown with the left hemisphere only. The darkness of the colored cortex indicates the percentage value shown in (d). Darker color indicates a higher percentage.

 $534 \left(p < 0.001\right)$ later than the parietal area. At the final stage, the ⁵³⁵ central area (n=159) gets activated with an average latency at 536 444 \pm 10 ms, and such activation is significantly ($p < 0.001$) later ⁵³⁷ than the frontal area. The temporal evolution of the cortical neural

⁵³⁸ activities for these regions is shown in Fig. [3g](#page-8-0) and [3h](#page-8-0).

The Pattern of Neural Activation During The Task 539

To investigate the possible role of each informative electrode ⁵⁴⁰ with respect to task processing, we evaluated if there existed a ⁵⁴¹ certain relationship between the activation time of these channels 542 and their correlation with stimulus and/or response onsets. Our 543 results show that the channels that activate earlier correlate more ⁵⁴⁴ with the stimulus onsets $(k = -0.48, r = 0.63, p < 0.001, k$: 545

 the slope of the fitted line, Fig. [4b](#page-9-0)), while the channels that activate later tend to correlate more with the response onsets $(k = 0.25, r = 0.44, p < 0.001, Fig. 4a)$ $(k = 0.25, r = 0.44, p < 0.001, Fig. 4a)$ $(k = 0.25, r = 0.44, p < 0.001, Fig. 4a)$. Such correlation with the stimulus onsets and the value with the response onsets is reversely 550 correlated $(k = -0.63, r = 0.47, p < 0.001,$ Fig. [4c](#page-9-0)). This result indicates the existence of an at-least two-stage neural process during the task processing, where the first stage is characterized by a stimulus-locked activation pattern, indicating the sensory information processing; the other stage is characterized by a response-locked activation pattern, representing the generation of the motor response.

 We then evaluated the percentage of stimulus-locked and response-locked channels detected within each of the informative ROIs. The results show that wide areas of the entire brain, including most parts of the occipital area, the entire parietal area, parts of the temporal, frontal area, and even the central area, present stimulus-locked activation patterns (Fig. [4d](#page-9-0)). The current observation suggests the importance and complexity of sensory information processing prior to motor execution. More specifically, within these regions, the highest percentage of stimulus-locked channels was found in LOC, reaching 83.3%. Following that, the SPC (71.2%) was also a rich source of producing stimulus- locked activation. As the final stage of the task processing, the central area contained the lowest percentage of stimulus-locked channels (see also Supplementary Fig. 6 for the distribution of these areas). As a comparison, the central area, including POC (36.2%) and PRC (27.3%), has the highest percentage of response-locked channels. Besides, some parts of the frontal area (parsOPE (21.4%), SFG (14.6%), cMFG (7.7%)), a small portion of the parietal area (e.g., SMG (9%)) have also been found contain response-locked channels (Fig. [4d](#page-9-0)-f), indicating the possible function of these ROIs in relation to the generation of movement.

⁵⁷⁹ Discussion

 In this work, using iEEG recordings from 4986 channels and 36 human subjects, we investigated the spatio-temporal dynamics of human cortical activity during a visually-cued motor process. Specifically, we answered three relevant scientific questions by conducting group analyses with high-frequency neural activities. In detail, we first identified the distribution and strength of brain regions involved in task processing. We then extracted the temporal activation sequence of different ROIs during the task. Finally, we analyzed the possible role (e.g., relating to sensory information process or motor response) of each informative ROI involved in the processing chain.

⁵⁹¹ The Distribution of Neural Activation Within The Brain

 We found rather broad regions of neural activation during the current task. Within the task-related regions, the most active regions were observed in the central, parietal, and occipital area, the regions in the frontal area that are close to the PRC, and the inferior part of the temporal area, demonstrating the essential roles of these cortical areas in visuomotor processing. Importantly, besides the lateral direction, we also give an overview of the neural activation along the depth direction (Fig. [1\)](#page-6-0). For instance, the deep brain structures, such as the insula cortex, parahippocampal gyrus, and hippocampus, have also been observed present task-related activation. The current observations further enrich the findings from previous ECoG [\(Keller et al., 2014\)](#page-13-16) and MEG 603 studies [\(Brovelli et al., 2017\)](#page-12-10). Moreover, our results also suggest 604 that the processing of a visuomotor task needs to recruit neural 605 networks spanning brain regions from both cortical and subcortical 606 levels. On this basis, revealing how neural activities interact 607 between cortical and subcortical regions will be interesting and ⁶⁰⁸ deserves further exploration in the following studies. 609

Apart from this, this work also gives additional spatial ⁶¹⁰ information on the activation of the parietal area, since we ⁶¹¹ have found the existence of significant left lateralization on 612 the activation within this area during the current visuomotor ⁶¹³ process. The present finding provides valuable implications for ⁶¹⁴ future parietal area-based studies, especially the research adopting 615 neural activities from the parietal area for the brain-machine ⁶¹⁶ [i](#page-15-16)nterface purpose [\(Aflalo et al., 2015;](#page-12-11) [Li et al., 2022;](#page-14-10) [Wang](#page-15-16) ⁶¹⁷ [et al., 2020\)](#page-15-16). More importantly, similar phenomena have been ⁶¹⁸ also detected under other cognitive processes, including the tool- ⁶¹⁹ action observation [\(Caruana et al., 2017\)](#page-13-24), auditory and visual ⁶²⁰ stimulus processing [\(Molholm et al., 2006\)](#page-14-25), and visual and ⁶²¹ motor imagery aspects of hand shape encoding [\(Klaes et al.,](#page-13-25) ⁶²² [2015\)](#page-13-25). Moreover, such left-lateralized activation is reported to 623 [b](#page-15-17)e independent of handedness [\(Haaland et al., 2004;](#page-13-26) [Vingerhoets](#page-15-17) 624 [et al., 2012;](#page-15-17) Króliczak and Frey, 2009). Hence, all these 625 observations may together suggest the existence of the action ⁶²⁶ observation/execution network involving this area, which possibly 627 mediates the identification of the basic goal of the observed action 628 for both humans and monkeys [\(Rizzolatti et al., 2014\)](#page-15-18). ⁶²⁹

The Spatio-temporal Evolution of Neural Activation During 630 The Task 631

In this work, we analyzed and presented the evolution of neural 632 activation across the human brain during a visuomotor task using ⁶³³ the neural recordings from all subjects (Fig. [3\)](#page-8-0). The results ⁶³⁴ were further supported by the consistent results observed among 635 the partially-covered ROIs from the individual subjects (see ⁶³⁶ Supplementary Figs. 4 and 5). Roughly, early activation is shown 637 in the lateral part of the occipital area, the superior and posterior 638 part of the parietal area, and the posterior and inferior part of 639 the temporal area. Then, the activation spreads to the frontal ⁶⁴⁰ area and finally ends with the central area. It is also of interest ⁶⁴¹ to compare our data with the results reported by [Johnson et al.](#page-13-28) ⁶⁴² [\(1996\)](#page-13-28) and [Nishitani and Hari](#page-14-26) [\(2000\)](#page-14-26). The former authors studied \qquad 643 the activation pathway during a visually guided reach movement 644 with nonhuman primates' single-neuron recordings. They found 645 the activation begins in the visual cortex and passes through the ⁶⁴⁶ posterior parietal cortex to the dorsal premotor cortex and then 647 to the primary motor cortex. The subsequent study reported the ⁶⁴⁸ temporal sequence of three ROIs during hand action imitation ⁶⁴⁹ using MEG recordings, where the visual cortex in the occipital ⁶⁵⁰ lobe first activates, and then the inferior frontal cortex activates 651 (parsOPE in this work), following that is the activation in the ⁶⁵² primary motor area (PRC in this work). These results are in good 653 agreement with our ones. Meanwhile, distinct from these studies, ⁶⁵⁴ our work extends the results to more and wider regions of the ⁶⁵⁵ entire human brain, and hence can provide a comparatively more 656 intact overview of the 'footprints' of neural activity during the ⁶⁵⁷ task. It is worth noting that the spatio-temporal sequence reported 658 here should be interpreted carefully since the results are derived 659 from group analysis. Thus, our results cannot detect variations in 660 activation time among subregions of different ROIs or the same ⁶⁶¹ ⁶⁶² ROIs (Supplementary Fig. 4). At the same time, our results make ⁶⁶³ it clear that there is a definitely consistent temporal sequence ⁶⁶⁴ across these ROIs.

 Notably, although temporal activation sequence results show that POC activates lastly among all the informative ROIs (Fig. [3\)](#page-8-0), the identified POC activation represents more than the somatosensory feedback after motor execution. Because the 669 average activation time of POC $(510\pm18 \text{ ms})$ in our work is slightly ahead of the movement onset (565 ms on average), indicating that some neurons in POC start firing prior to the movement onset (see also Supplementary Fig. 4a). Such early activation provides further evidence supporting the additional role of the somatosensory cortex in sensory information encoding that relates to the anticipation of movements [\(Wolpert et al., 1995;](#page-15-19) [Sun et al.,](#page-15-20) ⁶⁷⁶ [2015\)](#page-15-20).

 Besides, we have detected 13.6% (n=51) of electrodes located in the insula cortex presenting task-related activation, denoting the substantial involvement of this area during the visuomotor 680 task. However, only a few of them are informative enough $(n=8,$ 395 \pm 44 ms) for the calculation of activation time. This may be because of the observation that most of the task-related channels in this area tend to activate in an irregular way (i.e., the onsets of activation are distributed sparsely across trials). The neural mechanism behind such neural activation patterns is not well understood yet. Consistently, [Bartoli et al.](#page-12-12) [\(2018\)](#page-12-12) also reported that the insula cortex exhibits an increase in broadband gamma activity under a button press task but such activation is less robust and later than the inferior frontal cortex (see also Fig. [3\)](#page-8-0). Together, the current results imply that the insula cortex may play an indispensable role in sensory-motor processing, and the detailed function of this area still needs further investigation.

⁶⁹³ The Possible Role of The ROIs During The Task

 Within the detected processing chain of the visuomotor task, on the average level, our data support the general understanding that the neurons that activate early tend to correlate more with the visual stimulus delivery, while the neurons holding late activation tend to associate more with the motor response (Fig. [4a](#page-9-0)-c). Furthermore, we also analyze the neuronal representations as being 'sensory' or 'motor' for each informative channel based on whether the neural activation is more closely linked to the onset of a stimulus or the initiation of a response (Fig. [4d](#page-9-0)). The earliest activation and highest percentage of stimulus-locked channels presented in our results demonstrate together the role of the lateral occipital cortex in the visual information processing during the task [\(Tallon-Baudry et al., 2004;](#page-15-21) [Larsson and Heeger, 2006\)](#page-14-27). Then, a high percentage of stimulus-locked channels in the parietal area and temporal area indicate as well the important function of these areas in visual information processing. Such visual representation gets weak when the process evolves to the frontal and central areas. Moreover, we have also detected obvious involvement from the parietal and frontal areas in the early stage of neural processing relating to the initiation of motor response. Previous reports have consistently suggested that motor function from the parietal area is related to the sensorimotor transformation [\(Andersen and Cui,](#page-12-3) [2009\)](#page-12-3), including hand trajectory information [\(Hauschild et al.,](#page-13-2) [2012\)](#page-13-2) and motor intentions, where the intention in the parietal [a](#page-13-25)rea may be processed in relation to sensory predictions [\(Klaes](#page-13-25) [et al., 2015\)](#page-13-25). Whereas the motor function in the frontal area represents higher-level aspects of movement planning and decision making in relation to motor execution [\(Rizzolatti et al., 2014;](#page-15-18) 721 [Miller and Cohen, 2001;](#page-14-28) [Schall, 2015\)](#page-15-4). On these bases, our results 722 further enhance the understanding of the critical sensorimotor- ⁷²³ related functions for these two areas [\(Andersen and Buneo, 2002;](#page-12-13) ⁷²⁴ [Corbetta and Shulman, 2002\)](#page-13-0). At the last stage of the neural ⁷²⁵ processing chain, the central area presents the highest percentage ⁷²⁶ of response-locked neural activity, indicating their function in ⁷²⁷ motor execution and somatosensory processing [\(Scott, 2004;](#page-15-22) ⁷²⁸ [Lemon, 2008\)](#page-14-29). Interestingly, within the central area, we also detect 729 a minority of channels in the PRC that present early stimulus- ⁷³⁰ locked activation (Figs. [4d](#page-9-0) and [3a](#page-8-0)). These findings promote the ⁷³¹ understanding of the intact functions of this motor area, where the ⁷³² view that the PRC is an integral part of a cue-to-action network so 733 [a](#page-14-6)s to make immediate responses to environmental stimulus [\(Rao](#page-14-6) ⁷³⁴ [and Donoghue, 2014\)](#page-14-6), may account for the observation. 735

Taken together, the neural processing results during the ⁷³⁶ visuomotor task revealed in this work likely support the opinion ⁷³⁷ that visual information is firstly processed and segregated along ⁷³⁸ two pathways (Figs. [1,](#page-6-0) [3](#page-8-0) and [4\)](#page-9-0), where the ventral stream ⁷³⁹ (occipito-temporal cortex) computes vision for perception and ⁷⁴⁰ the dorsal stream (occipito-parietal cortex) computes vision for ⁷⁴¹ action [\(Culham and Valyear, 2006\)](#page-13-29). The parietal and frontal ⁷⁴² areas play an important role in the transformation of sensory ⁷⁴³ information to motor-related information. Specifically, the parietal ⁷⁴⁴ area participates in the early stage of such processing while the ⁷⁴⁵ frontal area tends to engage more in the motor execution. At ⁷⁴⁶ the final stage of motor execution, PRC generates motor signals ⁷⁴⁷ from an already highly processed sensory input and other internal ⁷⁴⁸ signals, following that is the production of the somatosensory 749 feedback from POC after motor execution (but also see discussion 750 above). Apart from this, we also conducted additional analyses ⁷⁵¹ to further investigate whether the reaction time of a subject ⁷⁵² is associated with the motor cortex only. To do this, we first ⁷⁵³ computed the average reaction time (computed as the trial- ⁷⁵⁴ averaged EMG onsets within each subject) and the average ⁷⁵⁵ raw activation time (without normalization) for all informative ⁷⁵⁶ channels within each informative ROI across subjects. Then, for ⁷⁵⁷ each informative ROI, we computed a Spearman correlation value 758 between the average reaction time and the average raw activation ⁷⁵⁹ time for all informative channels within this region. Finally, 760 the ROIs producing significant correlations $(p < 0.05)$ were 761 identified. In this analysis, we find that, besides the central area, ⁷⁶² the activation time from multiple regions, including temporal, ⁷⁶³ parietal, and frontal areas, also correlates significantly with the ⁷⁶⁴ reaction time of subjects for the current task (results not shown 765 here). This finding denotes that the reaction speed of a human is 766 not attributed to a single region (e.g., the well-known PRC), but ⁷⁶⁷ an entire task-related brain network including both sensory and ⁷⁶⁸ motor information processing. 769

Implications, Limitations, and Future Work 770

The current work presents the overall large-scale spatio-temporal 771 neural evolution of the human brain during a visuomotor task ⁷⁷² and evaluates the possible functions across different ROIs. The ⁷⁷³ findings from this study enhance the understanding of the neural ⁷⁷⁴ responses under the task for neuroscientific studies. Moreover, ⁷⁷⁵ the findings also bring valuable insights for future movement- ⁷⁷⁶ related brain-machine interface research, which is also a focus of 777 this work (e.g., besides the traditional sensorimotor area, paying ⁷⁷⁸ additional attention to brain areas such as the frontal and parietal 779

 area for the decoding of movement parameters). There are also limitations in this work. For example, despite the comparatively large number of electrodes across the human brain in our study, the number of informative channels is still limited. In this point, the current analysis delivers an observation on most of the crucial regions involving the neural processing network under the current task, but may still not cover all of them. Besides, to make a robust group analysis, we combine the results of informative channels from both hemispheres during the computation of the average activation time of different ROIs, the generated result hence should be interpreted as a macro-level spatio-temporal evolution under the current task. Hence, recording from a larger number of channels will still be essential and valuable for further revealing the neural dynamics of the human brain in more detail. Notably, we have identified the neuronal representations as being 'sensory' or 'motor' for informative channels from multiple ROIs. Meanwhile, we also detected a number of channels occupying positions that are intermediate between these two extremes [a](#page-13-30)nd can not be described by either label (Fig. [4d](#page-9-0), [DiCarlo](#page-13-30) [and Maunsell](#page-13-30) [\(2005\)](#page-13-30)). These channels generally display multiple firing patterns or present irregular neural responses that do not fit the two categories analyzed here. Making additional assessments of the functions for these channels presenting irregular firing patterns using new experiments or analysis methods (e.g., functional connectivity [\(Bastos and Schoffelen, 2015\)](#page-12-14)) remains an important topic and deserves further investigation. Lastly, this study concentrates solely on the high-frequency component of the neural recordings, but some other simultaneous movement- relevant phenomena relating to the lower-frequency activity have been reported as well, such as the sensorimotor rhythm (SMR) in the mu and beta band and movement-related cortical potentials (MRCP) of the slow waves [\(Liu et al., 2020\)](#page-14-30). What is largely unknown, is the relationship between these different measurements (e.g., the modulation of low-frequency activity to high-frequency ones) and the underlying mechanism between such relationship. In the future, it would be interesting to comprehensively address this question using a larger number of neural recordings.

817 Funding

 This work was supported by grants from the National Natural Science Foundation of China (Grant Nos. 52105030, 91948302, 91848112), Shanghai Municipal Science and Technology Major Project (Grant No. 2018SHZDZX01) and ZJLab, Medical and Engineering Cross Foundation of Shanghai Jiao Tong University (Grant No. AH0200003).

824 Author Contributions

 G. L., S. J., D. Z., L. C., and X. Z., designed research; G. L., S. J., Z. W., Z. F., and J. H., performed research; D. Z., L. C., and X. Z. supported with funding; G. L., S. J., J. M., and H. J. analyzed data; G. L., S. J., and G.S. wrote the paper; J. M., H. J., S. X., D. Z., L. C., and X. Z., reviewed and edited the paper.

830 Data and Code Availability Statement

 The human SEEG/ECoG data required to reproduce these findings are available from the authors after reasonable request. The software used in this study can be downloaded through the link provided within the paper. Other associated protocols, codes,

and materials discussed in the paper will be made available to 835 readers upon reasonable request. 836

$**837**$

The authors of this article declare no competing interests. 838

References and the state of the state of the state and the state of the state of the state $\frac{839}{2}$

- Aflalo, T., Kellis, S., Klaes, C., Lee, B., Shi, Y., Pejsa, ⁸⁴⁰ K., Shanfield, K., Hayes-Jackson, S., Aisen, M., Heck, C.. ⁸⁴¹ Decoding motor imagery from the posterior parietal cortex of a 842 tetraplegic human. Science 2015;348(6237):906–910. ⁸⁴³
- Andersen, R.A., Buneo, C.A.. Intentional maps in posterior 844 parietal cortex. Annual Review of Neuroscience 2002;25(1):189– ⁸⁴⁵ $220.$ 846
- Andersen, R.A., Cui, H.. Intention, action planning, and decision 847 making in parietal-frontal circuits. Neuron 2009;63(5):568–83. ⁸⁴⁸
- Arnal, L.H., Kleinschmidt, A., Spinelli, L., Giraud, A.L., ⁸⁴⁹ Megevand, P.. The rough sound of salience enhances aversion 850 through neural synchronisation. Nature Communications ⁸⁵¹ $2019;10(1):3671.$ 852
- Avanzini, P., Abdollahi, R.O., Sartori, I., Caruana, F., Pelliccia, ⁸⁵³ V., Casaceli, G., Mai, R., Lo Russo, G., Rizzolatti, G., Orban, ⁸⁵⁴ G.A.. Four-dimensional maps of the human somatosensory 855 system. Proceedings of the National Academy of Sciences 856 2016;113(13):E1936-43. 857
- Banerjee, A., Dean, H.L., Pesaran, B.. A likelihood method for ⁸⁵⁸ computing selection times in spiking and local field potential 859 activity. Journal of Neurophysiology $2010;104(6):3705-3720$. 860
- Bartoli, E., Aron, A.R., Tandon, N.. Topography and timing 861 of activity in right inferior frontal cortex and anterior insula for ⁸⁶² stopping movement. Human Brain Mapping 2018;39(1):189– ⁸⁶³ $203.$ 864
- Bartolomei, F., Nica, A., Valenti-Hirsch, M.P., Adam, C., ⁸⁶⁵ Denuelle, M.. Interpretation of SEEG recordings. Clinical ⁸⁶⁶ Neurophysiology 2018;48(1):53–57. 867
- Bassett, D.S., Wymbs, N.F., Porter, M.A., Mucha, P.J., ⁸⁶⁸ Carlson, J.M., Grafton, S.T.. Dynamic reconfiguration of ⁸⁶⁹ human brain networks during learning. Proceedings of the 870 National Academy of Sciences 2011;108(18):7641-6. 871
- Bastos, A.M., Schoffelen, J.M.. A tutorial review of functional 872 connectivity analysis methods and their interpretational pitfalls. 873 Frontiers in Systems Neuroscience 2015;9:175.
- Betzel, R.F., Medaglia, J.D., Kahn, A.E., Soffer, J., ⁸⁷⁵ Schonhaut, D.R., Bassett, D.S.. Structural, geometric and 876 genetic factors predict interregional brain connectivity patterns 877 probed by electrocorticography. Nature Biomedical Engineering 878 $2019;3(11):902-916.$ 879
- Bonini, F., Burle, B., Ligeois-Chauvel, C., Rgis, J., Chauvel, P., ⁸⁸⁰ Vidal, F.. Action monitoring and medial frontal cortex: Leading 881 role of supplementary motor area. Science 2014;343(6173):888. 882
- Botvinick, M.M., Cohen, J.D.. The computational and neural ⁸⁸³ basis of cognitive control: charted territory and new frontiers. ⁸⁸⁴ Cognitive Science 2014;38(6):1249–85. 885
- Bressler, S.L., Menon, V.. Large-scale brain networks in ⁸⁸⁶ cognition: emerging methods and principles. Trends Cognitive 887 Science 2010;14(6):277-90. 888
- Brovelli, A., Badier, J.M., Bonini, F., Bartolomei, F., Coulon, ⁸⁸⁹ O., Auzias, G.. Dynamic reconfiguration of visuomotor-related ⁸⁹⁰

- ⁸⁹³ Brovelli, A., Chicharro, D., Badier, J.M., Wang, H., Jirsa, ⁸⁹⁴ V.. Characterization of cortical networks and corticocortical ⁸⁹⁵ functional connectivity mediating arbitrary visuomotor ⁸⁹⁶ mapping. The Journal of Neuroscience 2015;35(37):12643–58.
- ⁸⁹⁷ Buzsaki, G., Anastassiou, C.A., Koch, C.. The origin of ⁸⁹⁸ extracellular fields and currents–EEG, ECoG, LFP and spikes. ⁸⁹⁹ Nature Reviews Neuroscience 2012;13(6):407–20.
- ⁹⁰⁰ Cardin, J.A., Carln, M., Meletis, K., Knoblich, U., Zhang, F.,
- ⁹⁰¹ Deisseroth, K., Tsai, L.H., Moore, C.I.. Driving fast-spiking ⁹⁰² cells induces gamma rhythm and controls sensory responses. 903 Nature 2009;459:663.
- ⁹⁰⁴ Caruana, F., Avanzini, P., Mai, R., Pelliccia, V., LoRusso, ⁹⁰⁵ G., Rizzolatti, G., Orban, G.A.. Decomposing tool-⁹⁰⁶ action observation: A stereo-EEG study. Cerebral Cortex ⁹⁰⁷ 2017;27(8):4229–4243.
- ⁹⁰⁸ Cohen, D.. Magnetoencephalography: Evidence of ⁹⁰⁹ magnetic fields produced by alpha-rhythm currents. Science ⁹¹⁰ 1968;161(3843):784–786.
- ⁹¹¹ Cohen, M.X.. Where does EEG come from and what does it ⁹¹² mean? Trends in Neurosciences 2017;40(4):208–218.
- ⁹¹³ Collins, D.L., Neelin, P., Peters, T.M., Evans, A.C.. ⁹¹⁴ Automatic 3D intersubject registration of MR volumetric data ⁹¹⁵ in standardized Talairach space. Journal of computer assisted ⁹¹⁶ tomography 1994;18(2):192–205.
- ⁹¹⁷ Conner, C.R., Chen, G., Pieters, T.A., Tandon, N.. Category ⁹¹⁸ specific spatial dissociations of parallel processes underlying ⁹¹⁹ visual naming. Cerebral Cortex 2014;24(10):2741–50.
- ⁹²⁰ Coon, W.G., Gunduz, A., Brunner, P., Ritaccio, A.L., Pesaran, ⁹²¹ B., Schalk, G.. Oscillatory phase modulates the timing ⁹²² of neuronal activations and resulting behavior. Neuroimage ⁹²³ 2016;133:294–301.
- ⁹²⁴ Coon, W.G., Schalk, G.. A method to establish the ⁹²⁵ spatiotemporal evolution of task-related cortical activity from ⁹²⁶ electrocorticographic signals in single trials. Journal of ⁹²⁷ Neuroscience Methods 2016;271:76–85.
- ⁹²⁸ Corbetta, M., Shulman, G.L.. Control of goal-directed ⁹²⁹ and stimulus-driven attention in the brain. Nature Reviews ⁹³⁰ Neuroscience 2002;3(3):201–15.
- ⁹³¹ Culham, J.C., Valyear, K.F.. Human parietal cortex in action. ⁹³² Current Opinion in Neurobiology 2006;16(2):205–12.
- ⁹³³ Del Percio, C., Derambure, P., Noce, G., Lizio, R., Bartres-
- ⁹³⁴ Faz, D., Blin, O., Payoux, P., Deplanque, D., Meligne, D., ⁹³⁵ Chauveau, N., Bourriez, J.L., Casse-Perrot, C., Lanteaume, ⁹³⁶ L., Thalamas, C., Dukart, J., Ferri, R., Pascarelli, M.T.,
- ⁹³⁷ Richardson, J.C., Bordet, R., Babiloni, C., PharmaCog, C.. ⁹³⁸ Sleep deprivation and modafinil affect cortical sources of resting
- ⁹³⁹ state electroencephalographic rhythms in healthy young adults. ⁹⁴⁰ Clinical Neurophysiology 2019;130(9):1488–1498.
- ⁹⁴¹ Desikan, R.S., Sgonne, F., Fischl, B., Quinn, B.T., Dickerson, ⁹⁴² B.C., Blacker, D., Buckner, R.L., Dale, A.M., Maguire, R.P., ⁹⁴³ Hyman, B.T.. An automated labeling system for subdividing ⁹⁴⁴ the human cerebral cortex on MRI scans into gyral based regions ⁹⁴⁵ of interest. Neuroimage 2006;31(3):968–980.
- ⁹⁴⁶ DiCarlo, J.J., Maunsell, J.H.. Using neuronal latency to ⁹⁴⁷ determine sensory-motor processing pathways in reaction time ⁹⁴⁸ tasks. Journal of Neurophysiology 2005;93(5):2974–86.
- ⁹⁴⁹ Ding, Z., Huang, Y., Bailey, S.K., Gao, Y., Cutting, L.E., ⁹⁵⁰ Rogers, B.P., Newton, A.T., Gore, J.C.. Detection of ⁹⁵¹ synchronous brain activity in white matter tracts at rest and

under functional loading. Proceedings of the National Academy 952 of Sciences 2018;115(3):595–600. ⁹⁵³

- Engel, A.K., Moll, C.K., Fried, I., Ojemann, G.A.. Invasive 954 recordings from the human brain: clinical insights and beyond. ⁹⁵⁵ Nature Reviews Neuroscience 2005;6(1):35-47.
- Fischl, B., Salat, D.H., Busa, E., Albert, M., Dieterich, M., ⁹⁵⁷ Haselgrove, C., van der Kouwe, A., Killiany, R., Kennedy, ⁹⁵⁸ D., Klaveness, S., Montillo, A., Makris, N., Rosen, B., Dale, ⁹⁵⁹ A.M.. Whole brain segmentation. Neuron 2002;33(3):341–355. ⁹⁶⁰
- Floyer-Lea, A., Matthews, P.M.. Changing brain networks ⁹⁶¹ for visuomotor control with increased movement automaticity. 962 Journal of Neurophysiology 2004;92(4):2405–2412. ⁹⁶³
- Franklin, D.W., Wolpert, D.M.. Computational mechanisms of sensorimotor control. Neuron 2011;72(3):425–42. 965
- Guevara, M., Roman, C., Houenou, J., Duclap, D., Poupon, C., ⁹⁶⁶ Mangin, J.F., Guevara, P.. Reproducibility of superficial white 967 matter tracts using diffusion-weighted imaging tractography. ⁹⁶⁸ Neuroimage 2017;147:703–725. ⁹⁶⁹
- Haaland, K.Y., Elsinger, C.L., Mayer, A.R., Durgerian, S., Rao, ⁹⁷⁰ S.M.. Motor sequence complexity and performing hand produce 971 differential patterns of hemispheric lateralization. Journal of ⁹⁷² Cognitive Neuroscience 2004;16(4):621–636. 973
- Hauschild, M., Mulliken, G.H., Fineman, I., Loeb, G.E., ⁹⁷⁴ Andersen, R.A.. Cognitive signals for brain-machine interfaces 975 in posterior parietal cortex include continuous 3D trajectory ⁹⁷⁶ commands. Proceedings of the National Academy of Sciences ⁹⁷⁷ $2012;109(42):17075-80.$ 978
- Jerbi, K., Lachaux, J.P., N'Diaye, K., Pantazis, D., Leahy, ⁹⁷⁹ R.M., Garnero, L., Baillet, S.. Coherent neural representation 980 of hand speed in humans revealed by MEG imaging. Proceedings ⁹⁸¹ of the National Academy of Sciences 2007;104(18):7676–7681. ⁹⁸²
- Johnson, P.B., Ferraina, S., Bianchi, L., Caminiti, R.. Cortical ⁹⁸³ networks for visual reaching: Physiological and anatomical ⁹⁸⁴ organization of frontal and parietal lobe arm regions. Cerebral ⁹⁸⁵ $\text{Cortex } 1996; 6(2): 102-119.$
- Keller, C.J., Honey, C.J., Entz, L., Bickel, S., Groppe, D.M., ⁹⁸⁷ Toth, E., Ulbert, I., Lado, F.A., Mehta, A.D.. Corticocortical ⁹⁸⁸ evoked potentials reveal projectors and integrators in human ⁹⁸⁹ brain networks. The Journal of Neuroscience 2014;34(27):9152– ⁹⁹⁰ $63.$ 991
- Klaes, C., Kellis, S., Aflalo, T., Lee, B., Pejsa, K., ⁹⁹² Shanfield, K., Hayes-Jackson, S., Aisen, M., Heck, C., ⁹⁹³ Liu, C., Andersen, R.A.. Hand shape representations in the ⁹⁹⁴ human posterior parietal cortex. The Journal of Neuroscience 995 $2015;35(46):15466-76.$
- Kopell, N.J., Gritton, H.J., Whittington, M.A., Kramer, M.A.. ⁹⁹⁷ Beyond the connectome: The dynome. Neuron 2014;83(6):1319– ⁹⁹⁸ $1328.$
- Koutsos, E., Paraskevopoulou, S.E., Constandinou, T.G.. ¹⁰⁰⁰ A 1.5 μ w NEO-based spike detector with adaptive-threshold 1001 for calibration-free multichannel neural interfaces. In: 2013 ¹⁰⁰² IEEE International Symposium on Circuits and Systems ¹⁰⁰³ (ISCAS2013). IEEE; 2013. p. 1922–1925. 1004
- Króliczak, G., Frey, S.H.. A common network in the left 1005 cerebral hemisphere represents planning of tool use pantomimes ¹⁰⁰⁶ and familiar intransitive gestures at the hand-independent level. ¹⁰⁰⁷ Cerebral Cortex 2009;19(10):2396-410. 1008
- Kuang, S., Morel, P., Gail, A.. Planning movements in visual ¹⁰⁰⁹ and physical space in monkey posterior parietal cortex. Cerebral 1010 $\text{Cortex } 2016;26(2):731-47.$
- ¹⁰¹² Lachaux, J.P., Axmacher, N., Mormann, F., Halgren, E., Crone, ¹⁰¹³ N.E.. High-frequency neural activity and human cognition: ¹⁰¹⁴ past, present and possible future of intracranial EEG research. ¹⁰¹⁵ Progress in Neurobiology 2012;98(3):279–301.
- ¹⁰¹⁶ Lachaux, J.P., Rudrauf, D., Kahane, P.. Intracranial ¹⁰¹⁷ EEG and human brain mapping. Journal of Physiology-Paris ¹⁰¹⁸ 2003;97(4):613–628.
- ¹⁰¹⁹ Larsson, J., Heeger, D.J.. Two retinotopic visual areas in ¹⁰²⁰ human lateral occipital cortex. The Journal of Neuroscience ¹⁰²¹ 2006;26(51):13128–13142.
- ¹⁰²² Lebedev, M.A., Nicolelis, M.A.. Brain-machine interfaces: ¹⁰²³ From basic science to neuroprostheses and neurorehabilitation. ¹⁰²⁴ Physiological Reviews 2017;97(2):767–837.
- ¹⁰²⁵ Ledberg, A., Bressler, S.L., Ding, M., Coppola, R., Nakamura, ¹⁰²⁶ R.. Large-scale visuomotor integration in the cerebral cortex. ¹⁰²⁷ Cerebral Cortex 2007;17(1):44–62.
- ¹⁰²⁸ Lemon, R.N.. Descending pathways in motor control. Annual ¹⁰²⁹ Review of Neuroscience 2008;31:195–218.
- ¹⁰³⁰ Li, G., Jiang, S., Chen, C., Brunner, P., Wu, Z., Schalk, G., ¹⁰³¹ Chen, L., Zhang, D.. iEEGview: an open-source multifunction ¹⁰³² GUI-based Matlab toolbox for localization and visualization of ¹⁰³³ human intracranial electrodes. Journal of Neural Engineering ¹⁰³⁴ 2019;17(1):016016.
- ¹⁰³⁵ Li, G., Jiang, S., Meng, J., Chai, G., Wu, Z., Fan, ¹⁰³⁶ Z., Hu, J., Sheng, X., Zhang, D., Chen, L., Zhu, ¹⁰³⁷ X.. Assessing differential representation of hand movements ¹⁰³⁸ in multiple domains using stereo-electroencephalographic ¹⁰³⁹ recordings. Neuroimage 2022;250:118969.
- ¹⁰⁴⁰ Li, G., Jiang, S., Paraskevopoulou, S.E., Chai, G., Wei, Z., Liu, ¹⁰⁴¹ S., Wang, M., Xu, Y., Fan, Z., Wu, Z., Chen, L., Zhang, ¹⁰⁴² D., Zhu, X.. Detection of human white matter activation and ¹⁰⁴³ evaluation of its function in movement decoding using stereo-¹⁰⁴⁴ electroencephalography (SEEG). Journal of Neural Engineering 1045 2021;18(4):0460c6.
- ¹⁰⁴⁶ Li, G., Jiang, S., Paraskevopoulou, S.E., Wang, M., ¹⁰⁴⁷ Xu, Y., Wu, Z., Chen, L., Zhang, D., Schalk, G.. ¹⁰⁴⁸ Optimal referencing for stereo-electroencephalographic (SEEG) ¹⁰⁴⁹ recordings. Neuroimage 2018;183:327–335.
- ¹⁰⁵⁰ Liu, S., Li, G., Jiang, S., Wu, X., Hu, J., ¹⁰⁵¹ Zhang, D., Chen, L.. Investigating data cleaning methods ¹⁰⁵² to improve performance of brain-computer interfaces based ¹⁰⁵³ on stereo-electroencephalography. Frontiers in neuroscience ¹⁰⁵⁴ 2021;15:725384–725384.
- ¹⁰⁵⁵ Liu, T., Huang, G., Jiang, N., Yao, L., Zhang, Z.. Reduce ¹⁰⁵⁶ brain computer interface inefficiency by combining sensory ¹⁰⁵⁷ motor rhythm and movement-related cortical potential features. ¹⁰⁵⁸ Journal of Neural Engineering 2020;17(3):035003.
- ¹⁰⁵⁹ Manning, J.R., Jacobs, J., Fried, I., Kahana, M.J.. Broadband ¹⁰⁶⁰ shifts in local field potential power spectra are correlated with ¹⁰⁶¹ single-neuron spiking in humans. The Journal of Neuroscience ¹⁰⁶² 2009;29(43):13613–20.
- ¹⁰⁶³ Maragos, P., Kaiser, J.F., Quatieri, T.F.. On amplitude ¹⁰⁶⁴ and frequency demodulation using energy operators. IEEE ¹⁰⁶⁵ Transactions on Signal Processing 1993;41(4):1532–1550.
- ¹⁰⁶⁶ Miller, E.K., Cohen, J.D.. An integrative theory of prefrontal ¹⁰⁶⁷ cortex function. Annual Review of Neuroscience 2001;24(1):167– ¹⁰⁶⁸ 202.
- 1069 Miller, K.J., Honey, C.J., Hermes, D., Rao, R.P. ¹⁰⁷⁰ denNijs, M., Ojemann, J.G.. Broadband changes in the ¹⁰⁷¹ cortical surface potential track activation of functionally diverse ¹⁰⁷² neuronal populations. Neuroimage 2014;85:711–720.
- Miller, K.J., Schalk, G., Fetz, E.E., den Nijs, M., Ojemann, ¹⁰⁷³ J.G., Rao, R.P.N.. Cortical activity during motor execution, ¹⁰⁷⁴ motor imagery, and imagery-based online feedback. Proceedings 1075 of the National Academy of Sciences 2010;107(9):4430.
- Molholm, S., Sehatpour, P., Mehta, A.D., Shpaner, M., Gomez- ¹⁰⁷⁷ Ramirez, M., Ortigue, S., Dyke, J.P., Schwartz, T.H., Foxe, ¹⁰⁷⁸ J.J.. Audio-visual multisensory integration in superior parietal ¹⁰⁷⁹ lobule revealed by human intracranial recordings. Journal of ¹⁰⁸⁰ Neurophysiology 2006;96(2):721–9.
- Nir, Y., Fisch, L., Mukamel, R., Gelbard-Sagiv, H., Arieli, ¹⁰⁸² A., Fried, I., Malach, R.. Coupling between neuronal firing ¹⁰⁸³ rate, gamma LFP, and BOLD fMRI is related to interneuronal ¹⁰⁸⁴ correlations. Current Biology 2007;17(15):1275-85.
- Nishitani, N., Hari, R.. Temporal dynamics of cortical ¹⁰⁸⁶ representation for action. Proceedings of the National Academy ¹⁰⁸⁷ of Sciences 2000;97(2):913. ¹⁰⁸⁸
- Oishi, K., Zilles, K., Amunts, K., Faria, A., Jiang, H., Li, X., ¹⁰⁸⁹ Akhter, K., Hua, K., Woods, R., Toga, A.W., Pike, G.B., ¹⁰⁹⁰ Rosa-Neto, P., Evans, A., Zhang, J., Huang, H., Miller, ¹⁰⁹¹ M.I., van Zijl, P.C., Mazziotta, J., Mori, S.. Human brain ¹⁰⁹² white matter atlas: identification and assignment of common ¹⁰⁹³ anatomical structures in superficial white matter. Neuroimage ¹⁰⁹⁴ 2008;43(3):447–57. ¹⁰⁹⁵
- Oosterhof, N.N., Tipper, S.P., Downing, P.E.. Visuo-motor ¹⁰⁹⁶ imagery of specific manual actions: a multi-variate pattern ¹⁰⁹⁷ analysis fMRI study. Neuroimage $2012;63(1):262-71$.
- Paraskevopoulou, S.E., Coon, W.G., Brunner, P., Miller, ¹⁰⁹⁹ K.J., Schalk, G.. Within-subject reaction time variability: ¹¹⁰⁰ Role of cortical networks and underlying neurophysiological ¹¹⁰¹ mechanisms. Neuroimage 2021;237:118127.
- Parvizi, J., Kastner, S.. Promises and limitations of human ¹¹⁰³ intracranial electroencephalography. Nature Neuroscience ¹¹⁰⁴ 2018;21(4):474–483. 1105
- de Pasquale, F., Della Penna, S., Snyder, A.Z., Lewis, C., ¹¹⁰⁶ Mantini, D., Marzetti, L., Belardinelli, P., Ciancetta, L., ¹¹⁰⁷ Pizzella, V., Romani, G.L., Corbetta, M.. Temporal dynamics ¹¹⁰⁸ of spontaneous MEG activity in brain networks. Proceedings of ¹¹⁰⁹ the National Academy of Sciences 2010;107(13):6040-5. 1110
- Pei, X., Leuthardt, E.C., Gaona, C.M., Brunner, P., ¹¹¹¹ Wolpaw, J.R., Schalk, G.. Spatiotemporal dynamics of ¹¹¹² electrocorticographic high gamma activity during overt and ¹¹¹³ covert word repetition. Neuroimage $2011;54(4):2960-72$.
- Perel, S., Sadtler, P.T., Oby, E.R., Ryu, S.I., Tyler- ¹¹¹⁵ Kabara, E.C., Batista, A.P., Chase, S.M.. Single-unit ¹¹¹⁶ activity, threshold crossings, and local field potentials in motor 1117 cortex differentially encode reach kinematics. Journal of ¹¹¹⁸ Neurophysiology 2015;114(3):1500–12. 1119
- Pesaran, B., Vinck, M., Einevoll, G.T., Sirota, A., Fries, ¹¹²⁰ P., Siegel, M., Truccolo, W., Schroeder, C.E., Srinivasan, ¹¹²¹ R.. Investigating large-scale brain dynamics using field potential 1122 recordings: analysis and interpretation. Nature Neuroscience ¹¹²³ 2018;21(7):903–919. 1124
- Posner, M., Szczepanski, S.M., Crone, N.E., Kuperman, R.A., ¹¹²⁵ Auguste, K.I., Parvizi, J., Knight, R.T.. Dynamic changes in ¹¹²⁶ phase-amplitude coupling facilitate spatial attention control in ¹¹²⁷ fronto-parietal cortex. PLoS Biology 2014;12(8):e1001936. ¹¹²⁸
- Rao, N.G., Donoghue, J.P.. Cue to action processing ¹¹²⁹ in motor cortex populations. Journal of Neurophysiology ¹¹³⁰ 2014;111(2):441–53. ¹¹³¹
- Ray, S., Crone, N.E., Niebur, E., Franaszczuk, P.J., ¹¹³² Hsiao, S.S.. Neural correlates of high-gamma oscillations ¹¹³³
- (60-200 hz) in macaque local field potentials and their potential implications in electrocorticography. The Journal of Neuroscience 2008;28(45):11526–36.
- Reichenbach, A., Franklin, D.W., Zatka-Haas, P., Diedrichsen, J.. A dedicated binding mechanism for the visual control of movement. Current Biology 2014;24(7):780–5.
- Rey, H.G., Ahmadi, M., Quian Quiroga, R.. Single trial analysis of field potentials in perception, learning and memory. Current Opinion in Neurobiology 2015;31:148–55.
- Ries, S.K., Dhillon, R.K., Clarke, A., King-Stephens, D.,
- Laxer, K.D., Weber, P.B., Kuperman, R.A., Auguste, K.I., Brunner, P., Schalk, G., Lin, J.J., Parvizi, J., Crone, N.E., Dronkers, N.F., Knight, R.T.. Spatiotemporal dynamics of word retrieval in speech production revealed by cortical high-frequency band activity. Proceedings of the National Academy
- of Sciences 2017;114(23):E4530–E4538.
- Rizzolatti, G., Cattaneo, L., Fabbri-Destro, M., Rozzi, S.. Cortical mechanisms underlying the organization of goal- directed actions and mirror neuron-based action understanding. Physiological Reviews 2014;94(2):655–706.
- Sakkalis, V.. Review of advanced techniques for the estimation of brain connectivity measured with EEG/MEG. Computers in Biology and Medicine 2011;41(12):1110–7.
- Salat, D.H., Lee, S.Y., van der Kouwe, A.J., Greve, D.N., Fischl, B., Rosas, H.D.. Age-associated alterations in cortical gray and white matter signal intensity and gray to white matter contrast. Neuroimage 2009;48(1):21–8.
- Schalk, G., Kapeller, C., Guger, C., Ogawa, H., Hiroshima, S., Lafer-Sousa, R., Saygin, Z.M., Kamada, K., Kanwisher, N.. Facephenes and rainbows: Causal evidence for functional and anatomical specificity of face and color processing in the human brain. Proceedings of the National Academy of Sciences 2017a;114(46):12285–12290.
- Schalk, G., Kubanek, J., Miller, K.J., Anderson, N.R., Leuthardt, E.C., Ojemann, J.G., Limbrick, D., Moran, D., Gerhardt, L.A., Wolpaw, J.R.. Decoding two-dimensional movement trajectories using electrocorticographic signals in humans. Journal of Neural Engineering 2007;4(3):264–75.
- Schalk, G., Marple, J., Knight, R.T., Coon, W.G.. Instantaneous voltage as an alternative to power- and phase- based interpretation of oscillatory brain activity. Neuroimage 2017b;157:545–554.
- Schall, J.D.. Visuomotor functions in the frontal lobe. Annual Review of Vision Science 2015;1:469–498.
- Scott, S.H.. Optimal feedback control and the neural basis of volitional motor control. Nature Reviews Neuroscience 2004;5(7):532–46.
- Sedghamiz, H.. BioSigKit: A Matlab toolbox and interface for analysis of biosignals. Journal of Open Source Software 2018;3(30):671.
- Sun, H., Blakely, T.M., Darvas, F., Wander, J.D., Johnson, L.A., Su, D.K., Miller, K.J., Fetz, E.E., Ojemann, J.G.. Sequential activation of premotor, primary somatosensory and primary motor areas in humans during cued finger movements. Clinical Neurophysiology 2015;126(11):2150–61.
- Takahashi, K., Kim, S., Coleman, T.P., Brown, K.A., Suminski, A.J., Best, M.D., Hatsopoulos, N.G.. Large-scale spatiotemporal spike patterning consistent with wave propagation in motor cortex. Nature Communications 2015;6:7169.
-
- Tallon-Baudry, C., Bertrand, O., Hénaff, M.A., Isnard, J., 1194 Fischer, C.. Attention modulates gamma-band oscillations ¹¹⁹⁵ differently in the human lateral occipital cortex and fusiform 1196 gyrus. Cerebral Cortex 2004;15(5):654–662.
- Thiery, T., Saive, A.L., Combrisson, E., Dehgan, A., Bastin, J., ¹¹⁹⁸ Kahane, P., Berthoz, A., Lachaux, J.P., Jerbi, K.. Decoding ¹¹⁹⁹ the neural dynamics of free choice in humans. PLoS Biology ¹²⁰⁰ 2020;18(12):e3000864–e3000864. ¹²⁰¹
- Thurer, B., Stockinger, C., Focke, A., Putze, F., Schultz, ¹²⁰² T., Stein, T.. Increased gamma band power during movement ¹²⁰³ planning coincides with motor memory retrieval. Neuroimage ¹²⁰⁴ 2016;125:172–181. ¹²⁰⁵
- Vingerhoets, G., Acke, F., Alderweireldt, A.S., Nys, J., ¹²⁰⁶ Vandemaele, P., Achten, E.. Cerebral lateralization of praxis ¹²⁰⁷ in right- and left-handedness: same pattern, different strength. ¹²⁰⁸ Human Brain Mapping 2012;33(4):763–77.
- Voytek, B., Kayser, A.S., Badre, D., Fegen, D., ¹²¹⁰ Chang, E.F., Crone, N.E., Parvizi, J., Knight, R.T., ¹²¹¹ D'Esposito, M.. Oscillatory dynamics coordinating human ¹²¹² frontal networks in support of goal maintenance. Nature ¹²¹³ Neuroscience 2015;18(9):1318-1324. 1214
- Wander, J.D., Blakely, T., Miller, K.J., Weaver, K.E., Johnson, ¹²¹⁵ L.A., Olson, J.D., Fetz, E.E., Rao, R.P.N., Ojemann, ¹²¹⁶ J.G.. Distributed cortical adaptation during learning of a brain- ¹²¹⁷ computer interface task. Proceedings of the National Academy ¹²¹⁸ of Sciences 2013;110(26):10818–10823. ¹²¹⁹
- Wang, M., Li, G., Jiang, S., Wei, Z., Hu, J., ¹²²⁰ Chen, L., Zhang, D.. Enhancing gesture decoding ¹²²¹ performance using signals from posterior parietal cortex: a ¹²²² stereo-electroencephalograhy (SEEG) study. Journal of Neural ¹²²³ Engineering 2020;17(4):046043.
- Wolpert, D., Ghahramani, Z., Jordan, M.. An internal model for ¹²²⁵ sensorimotor integration. Science 1995;269(5232):1880-1882. 1226
- Zalesky, A., Fornito, A., Cocchi, L., Gollo, L.L., Breakspear, ¹²²⁷ M.. Time-resolved resting-state brain networks. Proceedings of ¹²²⁸ the National Academy of Sciences $2014;111(28):10341-6$.

Supplementary Materials for Spatio-temporal Evolution of Human Neural Activity During Visually-cued Hand Movements

This PDF file includes:

Table S1 and S2 Figures S1 to S6

Supplementary Table 1. Clinical profiles of all 36 subjects that participated in the study. Among these subjects, 34 were implanted with SEEG depth electrodes, and 2 (Sub. 32, Sub. 35) were implanted with ECoG grid electrodes. Abbreviations for this table: RS (Recording hemisphere), SR (Sampling rate), EL (Number of electrode shafts), CH (Number of contacts), OH (Operating hand during the experiment), TH (Cut-off threshold during the line noise detection for each subject, see Sec. Data Pre-Processing of Materials and Methods), BC (Bad Channel, i.e., Number of channels whose line noise power exceeds the cut-off threshold).

Sub ID	Gender	Age	RS	SR(Hz)	EL	CH	OH	TH $(\mu$ V)	BC
$\mathbf{1}$	$\mathbf M$	23	${\rm Left}$	$1000\,$	10	121	Right	32.76	$\sqrt{2}$
$\boldsymbol{2}$	М	33	Left	1000	15	180	Right	68.43	$\,1\,$
3	$\rm F$	$30\,$	Right	1000	$\,7$	$60\,$	Left	24.17	$\boldsymbol{0}$
4	$\mathbf M$	${\bf 26}$	Right	1000	13	178	Left	30.16	$\mathbf{1}$
5	$\mathbf M$	$25\,$	Right	1000	$10\,$	143	Left	41.63	$\boldsymbol{0}$
6	${\bf F}$	17	Bilateral	1000	13	169	Left	3.24	$\sqrt{2}$
$\overline{7}$	$\rm F$	28	Right	1000	$\,9$	114	Left	77.02	$\boldsymbol{0}$
8	$\mathbf M$	$27\,$	Left	2000	16	208	$\rm Right$	36.67	$\boldsymbol{0}$
9	$\mathbf M$	15	Bilateral	500	13	194	Left	7.97	$\,3$
10	$\mathbf M$	31	Right	500	$\,6$	94	${\rm Left}$	$3.34\,$	$\boldsymbol{2}$
11	${\bf F}$	$\bf 22$	Left	2000	7	102	Right	2.66	$\boldsymbol{0}$
$12\,$	М	19	Bilateral	2000	$\boldsymbol{9}$	130	Left	5.68	$\mathbf{0}$
13	${\bf F}$	$30\,$	Bilateral	2000	13	170	Right	4.56	$\mathbf{0}$
14	$\mathbf M$	31	${\rm Left}$	2000	$10\,$	144	Right	2.99	$\bf 5$
15	$\mathbf M$	27	Bilateral	2000	$10\,$	144	Right	7.18	$\mathbf{1}$
16	М	16	Bilateral	2000	13	137	Right	6.73	8
17	$\mathbf M$	24	Right	1000	8	108	Left	10.27	$\mathbf{1}$
18	${\bf F}$	$30\,$	${\rm Left}$	1000	9	118	Right	2.90	$\overline{4}$
19	${\bf F}$	$33\,$	${\rm Left}$	2000	12	150	Right	10.94	$\boldsymbol{2}$
$20\,$	${\bf F}$	23	Bilateral	2000	15	198	Right	6.40	$\,3$
21	$\mathbf F$	23	Right	2000	10	130	Left	2.83	$\overline{2}$
22	$\mathbf F$	42	Left	2000	10	137	Right	8.29	$\mathbf{1}$
23	$\mathbf M$	$33\,$	Bilateral	2000	11	154	Right	14.34	$\mathbf{1}$
24	$\mathbf M$	15	${\rm Left}$	2000	$\,$ $\,$	110	Right	$7.27\,$	$\boldsymbol{0}$
$25\,$	$\mathbf M$	$25\,$	Bilateral	2000	8	108	Left	12.72	$\sqrt{2}$
26	М	29	Bilateral	2000	$\bf 5$	$72\,$	Right	2.30	$\,2$
27	М	22	Bilateral	2000	$\,6$	56	Left	3.83	$\mathbf{0}$
28	$\mathbf M$	15	Right	2000	7	102	${\rm Left}$	34.06	$\mathbf{1}$
29	М	${\bf 26}$	Left	1000	10	136	Right	58.83	$\boldsymbol{0}$
30	$\mathbf F$	27	Bilateral	2000	10	117	Right	16.82	$\,3$
31	${\bf F}$	27	Bilateral	2000	$\,6\,$	$64\,$	Right	104.52	$\boldsymbol{0}$
32	$\mathbf F$	19	Left	2000	N/A	242	$\rm Right$	1555.17	$\mathbf{1}$
33	$\mathbf M$	32	Bilateral	2000	9	126	Left	19.57	$\boldsymbol{0}$
34	$\rm F$	$35\,$	Right	2000	15	190	${\rm Left}$	29.25	$\boldsymbol{0}$
35	$\mathbf M$	26	Left	2000	N/A	$\,208$	Right	28.90	$\boldsymbol{0}$
36	М	31	Left	2000	11	172	Right	34.65	$\mathbf{0}$

Supplementary Table 2. Information of brain regions reported in this study. Electrode number indicates the number of electrodes implanted in the listed brain region across all 36 subjects.

ID	Brain Regions		Abbreviation Electrode Number	Groups	
$\mathbf{1}$	superior frontal gyrus	SFG	245		
$\overline{2}$	rostral middle frontal gyrus	rMFG	311		
3	caudal middle frontal gyrus	cMFG	174		
$\overline{4}$	lateral orbitofrontal gyrus	OFG	54	Frontal Area	
5	pars opercularis	parsOPE	119		
6	parstriangularis	parsTRI	98		
7	parsorbitalis	parsORB	32		
8	precentral cortex	PRC	368		
9	postcentral cortex	POC	213	Central Area	
10	paracentral cortex	PAC	56		
$\mathbf{1}$	superior parietal cortex	SPC	182		
12	inferior parietal cortex	IPC	206	Parietal Area	
13	supramarginal gyrus	SMG	261		
14	precuneus cortex	PNC	183		
15	superior temporal gyrus	STG	390		
16	inferior temporal gyrus	ITG	193	Temporal Area	
17	middle temporal gyrus	MTG	325		
18	transverse temporal gyrus	TTG	43		
19	fusiform gyrus	FFG	102		
20	banks of the superior temporal sulcus	bankssts	53		
21	lateral occipital cortex	LOC	74		
22	pericalcarine cortex	PCC	33	Occipital Area	
23	lingual gyrus	LGG	62		
24	cuneus cortex	CNC	18		
25	insula cortex	ISC	374	Insula	
26	parahippocampal gyrus	PHG	50		
27	posterior cingulate gyrus	PCG	77	Limbic System	
28	Hippocampus	N/A	196		
29	caudal anterior cingulate gyrus	cACG	49		
30	rostral anterior cingulate gyrus	rACG	25		
31	Amygdala	N/A	85		

Supplementary Figure 1. Experiment protocol of the current study. Each subject performed five different hand or arm movements (see Cue). In each trial, one of five tasks was randomly selected and displayed (Cue, the onset of movement cue was set as time 0 in this study). They performed each type of movement 20 times (5 s each, [0, 5] s). Before the movement, each subject rested for 4 s ([-5, -1] s), and then a warning sign ([-1, 0] s) prompted the subject for movement initiation.

Supplementary Figure 2. Electrodes localization results of all 36 subjects. a)/b)/c)/d) Right/Left/Frontal/Top view of all the electrodes projected to the standard Montreal Neurological Institute (MNI) template. The electrodes (SEEG and ECoG) are shown with small balls. Different colors indicate different anatomical positions, where the red indicates the gray matter, the blue indicates the white matter, the purple indicates the hippocampus, the dark green indicates the amygdala, the yellow indicates the putamen and the gray indicates the other structures. LH/RH : L eft/Right hemisphere.

Supplementary Figure 3. The illustration of data processing in this work. The flow chart corresponds to the data processing from the section (Methods: Data Pre-Processing) to the section (Methods: Activation Pattern Evaluation). Specifically, to identify the response-locked channels (left lower subfigure), we first computed Pearson's correlation for the detected neural activation of each informative channel and the EMG onsets across all trials. Then, the sequence of detected neural activation was randomly shuffled and the correlation with the EMG onsets was computed again. This procedure was repeated 2500 times, thus, generating a distribution of surrogate correlation value (the histogram) and the subsequent p value (vertical red line) for the observed correlation value. The channel whose p value was smaller than the significance level ($p < 0.05$ after Bonferroni correction) was identified as the response-locked channel. To identify the stimulus-locked channels (right lower subfigure), for each informative channel, the standard deviation of detected neural activation from randomly selected 60 trials was first computed. Then, this process was repeated for 10^6 times and the average standard deviation of these repetitions (the histogram) was obtained for each channel. The channel whose average standard deviation is smaller than the threshold (vertical red line) is identified as the stimulus-locked channel (see Methods: Activation Pattern Evaluation for more details).

Supplementary Figure 4. The spatio-temporal activation results during the task from four typical subjects (Sub. 02 (a), Sub. 06 (b), Sub. 27 (c), Sub. 32 (d)). The results are presented in groups based on the region of interest (ROI) where each informative electrode of this subject is located (same as Fig. 3a/e/f, see also Supplementary Table 2). a) The neural activation time of different ROIs from a single subject (Sub. 02). The boxplot presents the distribution of neural activation time for all the samples detected within each ROI. The colored dot indicates the result of each informative electrode. The vertical line within the boxplot indicates the median value. The right subfigure presents the position of each informative electrode (colored the same as the left subfigure) in the MNI brain. The black dots denote all the electrodes implanted for this subject. $b/(c)/d$ Results from the other typical subjects. Same configurations as a).

Supplementary Figure 5. The spatio-temporal activation results during the task from four typical subjects (Sub. 02 (a), Sub. 08 (b), Sub. 09 (c), Sub. 34 (d)). The results are presented in groups based on the broader brain area where each informative electrode of this subject is located (same as Fig. $3d/g/h$, see also Supplementary Table 2). a) The neural activation time of different broader brain areas from a single subject (Sub. 02). The boxplot in the left subfigure presents the distribution of neural activation time for all the samples detected within each broader brain area. The colored dot indicates the result of each informative electrode. The vertical line within the boxplot indicates the median value. The right subfigure presents the position of each informative electrode (colored the same as the left subfigure) in the MNI brain. The black dots denote all the electrodes implanted for this subject. $b)/(c)/d$) Results from the other typical subjects. Same configurations as a).

Supplementary Figure 6. Left(a)/Middle(b) view of the distribution of stimulus-locked channels on a flattened MNI brain. Results are shown with the left hemisphere only. The darkness of the colored cortex indicates the percentage value shown in Fig.4d of the main content. Darker color indicates a higher percentage. See Methods: Activation Pattern Evaluation for more details.