5,145 research outputs found
Recommended from our members
Fiber Beam Analysis of Reinforced Concrete Members with Cyclic Constitutive and Material Laws
This paper presents a non-linear Timoshenko beam element with axial, bending, and shear force interaction for nonlinear analysis of reinforced concrete structures. The structural material tangent stiffness matrix, which relates the increments of load to corresponding increments of displacement, is properly formulated. Appropriate simplified cyclic uniaxial constitutive laws are developed for cracked concrete in compression and tension. The model also includes the softening effect of the concrete due to lateral tensile strain. To establish the validity of the proposed model, correlation studies with experimentally-tested concrete specimens have been conducted
Deep Video Generation, Prediction and Completion of Human Action Sequences
Current deep learning results on video generation are limited while there are
only a few first results on video prediction and no relevant significant
results on video completion. This is due to the severe ill-posedness inherent
in these three problems. In this paper, we focus on human action videos, and
propose a general, two-stage deep framework to generate human action videos
with no constraints or arbitrary number of constraints, which uniformly address
the three problems: video generation given no input frames, video prediction
given the first few frames, and video completion given the first and last
frames. To make the problem tractable, in the first stage we train a deep
generative model that generates a human pose sequence from random noise. In the
second stage, a skeleton-to-image network is trained, which is used to generate
a human action video given the complete human pose sequence generated in the
first stage. By introducing the two-stage strategy, we sidestep the original
ill-posed problems while producing for the first time high-quality video
generation/prediction/completion results of much longer duration. We present
quantitative and qualitative evaluation to show that our two-stage approach
outperforms state-of-the-art methods in video generation, prediction and video
completion. Our video result demonstration can be viewed at
https://iamacewhite.github.io/supp/index.htmlComment: Under review for CVPR 2018. Haoye and Chunyan have equal contributio
Implicitly Constrained Semi-Supervised Least Squares Classification
We introduce a novel semi-supervised version of the least squares classifier.
This implicitly constrained least squares (ICLS) classifier minimizes the
squared loss on the labeled data among the set of parameters implied by all
possible labelings of the unlabeled data. Unlike other discriminative
semi-supervised methods, our approach does not introduce explicit additional
assumptions into the objective function, but leverages implicit assumptions
already present in the choice of the supervised least squares classifier. We
show this approach can be formulated as a quadratic programming problem and its
solution can be found using a simple gradient descent procedure. We prove that,
in a certain way, our method never leads to performance worse than the
supervised classifier. Experimental results corroborate this theoretical result
in the multidimensional case on benchmark datasets, also in terms of the error
rate.Comment: 12 pages, 2 figures, 1 table. The Fourteenth International Symposium
on Intelligent Data Analysis (2015), Saint-Etienne, Franc
Apparent non-canonical trans-splicing is generated by reverse transcriptase in vitro
Trans-splicing, the in vivo joining of two RNA molecules, is well characterized in several groups of simple organisms but was long thought absent from fungi, plants and mammals. However, recent bioinformatic analyses of expressed sequence tag (EST) databases suggested widespread trans-splicing in mammals^1-2^. Splicing, including the characterised trans-splicing systems, involves conserved sequences at the splice junctions. Our analysis of a yeast non-coding RNA revealed that around 30% of the products of reverse transcription lacked an internal region of 117 nt, suggesting that the RNA was spliced. The junction sequences lacked canonical splice-sites but were flanked by direct repeats, and further analyses indicated that the apparent splicing actually arose because reverse transcriptase can switch templates during transcription^3^. Many newly identified, apparently trans-spliced, RNAs lacked canonical splice sites but were flanked by short regions of homology, leading us to question their authenticity. Here we report that all reported categories of non-canonical splicing could be replicated using an in vitro reverse transcription system with highly purified RNA substrates. We observed the reproducible occurrence of ostensible trans-splicing, exon shuffling and sense-antisense fusions. The latter generate apparent antisense non-coding RNAs, which are also reported to be abundant in humans^4^. Different reverse transcriptases can generate different products of template switching, providing a simple diagnostic. Many reported examples of splicing in the absence of canonical splicing signals may be artefacts of cDNA preparation
Evidence for supercoughers in an analysis of six tuberculosis cohorts from China, Peru, The Gambia and Uganda
BACKGROUND: It is very difficult to observe tuberculosis (TB) transmission chains and thus, identify superspreaders. We investigate cough duration as a proxy measure of transmission to assess the presence of potential TB superspreaders.//
DESIGN: We analyzed six studies from China, Peru, The Gambia and Uganda, and determined the distribution of cough duration and compared it with several theoretical distributions. To determine factors associated with cough duration, we used linear regression and boosted regression trees to examine the predictive power of patient, clinical and environmental characteristics.//
RESULTS: We found within-study heterogeneity in cough duration and strong similarities across studies. Approximately 20% of patients contributed 50% of total cough days, and around 50% of patients contributed 80% of total cough days. The cough duration distribution suggested an initially increasing, and subsequently, decreasing hazard of diagnosis. While some of the exposure variables showed statistically significant associations with cough duration, none of them had a strong effect. Multivariate analyses of different model types did not produce a model that had good predictive power.//
CONCLUSION: We found consistent evidence for the presence of supercoughers, but no characteristics predictive of such individuals
The tumor suppressor Fat1 is dispensable for normal murine hematopoiesis
Loss and overexpression of FAT1 occurs among different cancers, with these divergent states equated with tumor suppressor and oncogene activity, respectively. Regarding the latter, FAT1 is highly expressed in a high proportion of human acute leukemias relative to normal blood cells, with evidence pointing to an oncogenic role. We hypothesized that this occurrence represents legacy expression of FAT1 in undefined hematopoietic precursor subsets (i.e. sustained following transformation), predicating a role for FAT1 during normal hematopoiesis. We explored this concept by using the Vav-iCre strain to construct conditional knockout mice in which Fat1 expression was deleted at the hematopoietic stem cell stage. Extensive analysis of precursor and mature blood populations using multipanel flow cytometry revealed no ostensible differences between Fat1 conditional knockout mice and normal littermates. Further functional comparisons involving colony-forming unit and competitive bone marrow transplantation assays support the conclusion that Fat1 is dispensable for normal murine hematopoiesis
Manipulating infrared photons using plasmons in transparent graphene superlattices
Superlattices are artificial periodic nanostructures which can control the
flow of electrons. Their operation typically relies on the periodic modulation
of the electric potential in the direction of electron wave propagation. Here
we demonstrate transparent graphene superlattices which can manipulate infrared
photons utilizing the collective oscillations of carriers, i.e., plasmons of
the ensemble of multiple graphene layers. The superlattice is formed by
depositing alternating wafer-scale graphene sheets and thin insulating layers,
followed by patterning them all together into 3-dimensional
photonic-crystal-like structures. We demonstrate experimentally that the
collective oscillation of Dirac fermions in such graphene superlattices is
unambiguously nonclassical: compared to doping single layer graphene,
distributing carriers into multiple graphene layers strongly enhances the
plasmonic resonance frequency and magnitude, which is fundamentally different
from that in a conventional semiconductor superlattice. This property allows us
to construct widely tunable far-infrared notch filters with 8.2 dB rejection
ratio and terahertz linear polarizers with 9.5 dB extinction ratio, using a
superlattice with merely five graphene atomic layers. Moreover, an unpatterned
superlattice shields up to 97.5% of the electromagnetic radiations below 1.2
terahertz. This demonstration also opens an avenue for the realization of other
transparent mid- and far-infrared photonic devices such as detectors,
modulators, and 3-dimensional meta-material systems.Comment: under revie
- …