We introduce a novel semi-supervised version of the least squares classifier.
This implicitly constrained least squares (ICLS) classifier minimizes the
squared loss on the labeled data among the set of parameters implied by all
possible labelings of the unlabeled data. Unlike other discriminative
semi-supervised methods, our approach does not introduce explicit additional
assumptions into the objective function, but leverages implicit assumptions
already present in the choice of the supervised least squares classifier. We
show this approach can be formulated as a quadratic programming problem and its
solution can be found using a simple gradient descent procedure. We prove that,
in a certain way, our method never leads to performance worse than the
supervised classifier. Experimental results corroborate this theoretical result
in the multidimensional case on benchmark datasets, also in terms of the error
rate.Comment: 12 pages, 2 figures, 1 table. The Fourteenth International Symposium
on Intelligent Data Analysis (2015), Saint-Etienne, Franc