90 research outputs found

    A Novel Nanocomposite with Photo-Polymerization for Wafer Level Application

    Get PDF
    ©2008 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or distribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE. This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.A novel nanocomposite photo-curable material which can act both as a photoresist and a stress redistribution layer applied on the wafer level was synthesized and studied. In the experiments, 20-nm silica fillers were modified by a silane coupling agent through a hydrolysis and condensation reaction and then incorporated into the epoxy matrix. A photo-sensitive initiator was added into the formulation which can release cations after ultraviolet exposure and initiate the epoxy crosslinking reaction. The photo-crosslinking reaction of the epoxy made it a negative tone photoresist. The curing reaction of the nanocomposites was monitored by a differential scanning calorimeter with the photo-calorimetric accessory. The thermal mechanical properties of photo-cured nanocomposites thin film were also measured. It was found that the moduli change of the nanocomposites as the filler loading increasing did not follow the Mori–Tanaka model, which indicated that the nanocomposite was not a simple two-phase structure as the composite with micron size filler. The addition of nano-sized silica fillers reduced the thermal expansion and improved the stiffness of the epoxy, with only a minimal effect on the optical transparency of the epoxy, which facilitated the complete photo reaction in the epoxy

    Online Metro Origin-Destination Prediction via Heterogeneous Information Aggregation

    Full text link
    Metro origin-destination prediction is a crucial yet challenging time-series analysis task in intelligent transportation systems, which aims to accurately forecast two specific types of cross-station ridership, i.e., Origin-Destination (OD) one and Destination-Origin (DO) one. However, complete OD matrices of previous time intervals can not be obtained immediately in online metro systems, and conventional methods only used limited information to forecast the future OD and DO ridership separately. In this work, we proposed a novel neural network module termed Heterogeneous Information Aggregation Machine (HIAM), which fully exploits heterogeneous information of historical data (e.g., incomplete OD matrices, unfinished order vectors, and DO matrices) to jointly learn the evolutionary patterns of OD and DO ridership. Specifically, an OD modeling branch estimates the potential destinations of unfinished orders explicitly to complement the information of incomplete OD matrices, while a DO modeling branch takes DO matrices as input to capture the spatial-temporal distribution of DO ridership. Moreover, a Dual Information Transformer is introduced to propagate the mutual information among OD features and DO features for modeling the OD-DO causality and correlation. Based on the proposed HIAM, we develop a unified Seq2Seq network to forecast the future OD and DO ridership simultaneously. Extensive experiments conducted on two large-scale benchmarks demonstrate the effectiveness of our method for online metro origin-destination prediction

    Willis metamaterial on a structured beam

    Full text link
    Bianisotropy is common in electromagnetics whenever a cross-coupling between electric and magnetic responses exists. However, the analogous concept for elastic waves in solids, termed as Willis coupling, is more challenging to observe. It requires coupling between stress and velocity or momentum and strain fields, which is difficult to induce in non-negligible levels, even when using metamaterial structures. Here, we report the experimental realization of a Willis metamaterial for flexural waves. Based on a cantilever bending resonance, we demonstrate asymmetric reflection amplitudes and phases due to Willis coupling. We also show that, by introducing loss in the metamaterial, the asymmetric amplitudes can be controlled and can be used to approach an exceptional point of the non-Hermitian system, at which unidirectional zero reflection occurs. The present work extends conventional propagation theory in plates and beams to include Willis coupling, and provides new avenues to tailor flexural waves using artificial structures.Comment: 21 pages, 3 figure

    Improved isolation of good-quality total RNA from the optic stalk of Mud crab, Scylla paramamosain

    Get PDF
    Abstract An improved and efficient protocol was developed based on the TaKaRa RNAiso Plus Kit (Code: D9108A) for isolating good-quality total RNA from the optic stalk of mud crab, Scylla paramamosain . The protocol was based on the Trizol method with modifications. The carapace overlapping the optic stalk was retained with RNA in regular protocol. In order to remove the abundant deposition correlative with the carapace which makes the isolation of RNA particularly difficult, 5M potassium acetate solution (pH = 6.0) was added before the precipitation of RNA, and the temperature of RNA deposition was also decreased to -70\ubaC to ensure the stabilization of RNA. Good-quality total RNA from the optic stalk of S. paramamosain could be easily isolated with this modified protocol and three conventional methods were also employed to confirm the quality of RNA. This improved method would be helpful in facilitating molecular research of crabs involving RNA from the optic stalk

    Translational medical bioengineering research of traumatic brain injury among Chinese and American pedestrians caused by vehicle collision based on human body finite element modeling

    Get PDF
    Based on the average human body size in China and the THUMS AM50 finite element model of the human body, the Kriging interpolation algorithm was used to model the Chinese 50th percentile human body, and the biological fidelity of the model was verified. We built three different types of passenger vehicle models, namely, sedan, sports utility vehicle (SUV), and multi-purpose vehicle (MPV), and used mechanical response analysis and finite element simulation to compare and analyze the dynamic differences and head injury differences between the Chinese 50th percentile human body and the THUMS AM50 model during passenger vehicle collisions. The results showed that there are obvious differences between the Chinese mannequin and THUMS in terms of collision time, collision position, invasion speed, and angle. When a sedan collided with the mannequins, the skull damage to the Chinese human body model was more severe, and when a sedan or SUV collided, the brain damage to the Chinese human body was more severe. The abovementioned results suggest that the existing C-NCAP pedestrian protection testing regulations may not provide the best protection for Chinese human bodies, and that the regulations need to be improved by combining collision damage mechanisms and the physical characteristics of Chinese pedestrians. This thorough investigation is positioned to shed light on the fundamental biomechanics and injury mechanisms at play. Furthermore, the amalgamation of clinically rooted translational and engineering research in the realm of traumatic brain injury has the potential to establish a solid foundation for discerning preventive methodologies. Ultimately, this endeavor holds the potential to introduce effective strategies aimed at preventing and safeguarding against traumatic brain injuries

    Solid-State Spun Fibers from 1 mm Long Carbon Nanotube Forests Synthesized by Water-Assisted Chemical Vapor Deposition

    Get PDF
    In this work, we report continuous carbon nanotube fibers dry-drawn directly from water-assisted CVD grown forests with millimeter scale length. As-drawn nanotube fibers exist as aerogel and can be transformed into more compact fibers through twisting or densification with a volatile liquid. Nanotube fibers are characterized by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), Raman microscopy and wide-angle X-ray diffraction (WAXD). Mechanical behavior and electrical conductivity of the post-treated nanotube fibers are investigated

    Controlled Fabrication of Aligned Carbon Nanotube Architectures for Microelectronics Packaging Applications

    Get PDF
    This thesis is devoted to the fabrication of carbon nanotube structures for microelectronics packaging applications with an emphasis on fundamental studies of nanotube growth and assembly, wetting of nanotube structures, and nanotube-based composites. A CVD process is developed that allows controlled growth of a variety of CNT structures, such as CNT films, bundles, and stacks. Use of an Al2O3 support enhances the Fe catalyst activity by increasing the CNT growth rate by nearly two orders of magnitude under the same growth conditions. By introducing a trace amount of weak oxidants into the CVD chamber during CNT growth, aligned CNT ends can be opened and/or functionalized, depending on the selection of oxidants. By varying the growth temperature, CNT growth can be performed in a gas diffusion- or kinetics-controlled regime. To overcome the challenges that impede implementation of CNTs in circuitry, a CNT transfer process was proposed to assemble aligned CNT structures (films, stacks &bundles) at low temperature which ensures compatibility with current microelectronics fabrication sequences and technology. Field emission and electrical testing of the as-assembled CNT devices indicate good electrical contact between CNTs and solder and a very low contact resistance across CNT/solder interfaces. For attachment of CNTs and other applications (e.g. composites), wetting of nanotube structures was studied. Two model surfaces with two-tier scale roughness were fabricated by controlled growth of CNT arrays followed by coating with fluorocarbon layers formed by plasma polymerization to study roughness geometric effects on superhydrophobicity. Due to the hydrophobicity of nanotube structures, electrowetting was investigated to reduce the hydrophobicity of aligned CNTs by controllably reducing the interfacial tension between carbon nanotubes (CNTs) and liquids. Electrowetting can greatly reduce the contact angle of liquids on the surfaces of aligned CNT films. However, contact angle saturation still occurs. Variable frequency microwave (VFM) radiation can greatly improve the CNT/epoxy interfacial bonding strength. Compared to composites cured by thermal heating, VFM-cured composites demonstrate higher CNT/matrix interfacial bonding strength, which is reflected in composite negative thermal expansion. The improved CNT/epoxy interface enhances the thermal conductivity of the composites by 26-30%.Ph.D.Committee Chair: C. P. Wong; Committee Chair: Dennis W. Hess; Committee Member: Sankar Nair; Committee Member: William J. Koros; Committee Member: Z. L. Wan

    Sensitivity Analysis of Influencing Factors of Supercritical Methane Flow and Heat Transfer in a U-Tube

    No full text
    Due to the existence of a Dean vortex in a U-tube, the flow and heat transfer process of supercritical methane is complex, and its thermophysical property are greatly influenced by different factors. Based on computational fluid dynamics theory, the numerical simulation of the turbulent flow and heat transfer characteristics of supercritical methane in a U-tube with an inner diameter of 10 mm and a radius of curvature of 27 mm carried out by using the finite volume method. On the basis of verifying the reliability of the model, the influences of inlet mass flux (G), heat flux on the tube wall boundary (q), pressure on the outlet (P), and gravity acceleration factors (g) on heat transfer characteristics were analyzed. The calculation results show that the sensitivity of the effects of G, q, P, and g on the heat transfer coefficient is, from large to small, in the order of P, G, g, and q. Compared with a horizontal straight tube, a U-tube can significantly improve heat transfer in the elbow part, but the presence of the elbow reduces heat transfer in the subsequent straight pipe section. The research in this paper has significance as a reference for the construction of the LNG gasification process

    MicroRNA-21 as a potential biomarker for detecting esophageal carcinoma in Asian populations: a meta-analysis

    No full text
    Background MicroRNA-21 (miR-21) is significantly expressed in a variety of cancers and could be used as a tumor biomarker. However, the results are varied, and no studies on the diagnostic usefulness of miR-21 in Asian esophageal cancer (EC) patients have been published. This meta-analysis was aimed at exploring whether miR-21 can be used as a diagnostic marker and assessing its effectiveness. Methods The relevant literature was identified in six main databases: Ovid MEDLINE, PsycINFO, PubMed MEDLINE, Embase, Web of Science, and the Cochrane Library. Two researchers independently selected the literature based on the inclusion and exclusion criteria, extracted data, and evaluated the risk of bias. The meta-analysis was carried out using Review Manager 5.4, Meta-Disc 1.4 and STATA 15.1 software. In the end, 987 patients from 12 different studies were included. Quality evaluation of diagnostic accuracy studies 2 (QUADAS—2) was used to examine the risk of bias. Results The pooled sensitivity (SEN) was 0.72 (95% CI [0.69–0.75]), the pooled specificity (SPE) was 0.78 (95% CI [0.75–0.81]), the pooled positive likelihood ratio (PLR) was 2.87 (95% CI [2.28–3.59]), the pooled negative likelihood ratio (NLR) was 0.36 (95% CI [0.31–0.43]), the pooled diagnostic odds ratio (DOR) was 10.00 (95% CI [7.73–12.95]), and the area under the curve 0.82 (95% CI [0.79–0.85]). A Deeks’ funnel plot shows that there was no publication bias (P = 0.99). Conclusion Our findings suggest miR-21 might be the potential biomarker for detecting EC in Asian populations, with a good diagnostic value
    • …
    corecore