45,353 research outputs found
Recommended from our members
Assessing the effects of technological progress on energy efficiency in the construction industry: A case of China
Energy-saving technologies in buildings have received great attention from energy efficiency researchers in the construction sector. Traditional research tends to focus on the energy used during building operation and in construction materials production, but it usually neglects the energy consumed in the building construction process. Very few studies have explored the impacts of technological progress on energy efficiency in the construction industry. This paper presents a model of the building construction process based on Cobb-Douglas production function. The model estimates the effects of technological progress on energy efficiency with the objective to examine the role that technological progress plays in energy savings in China's construction industry. The modeling results indicated that technological progress improved energy efficiency by an average of 7.1% per year from 1997 to 2014. Furthermore, three main technological progress factors (the efficiency of machinery and equipment, the proportion change of the energy structure, and research and development investment) were selected to analyze their effects on energy efficiency improvement. These positive effects were verified, and results show the effects of first two factors are significant. Finally, recommendations for promoting energy efficiency in the construction industry are proposed
Indirect unitarity violation entangled with matter effects in reactor antineutrino oscillations
If finite but tiny masses of the three active neutrinos are generated via the
canonical seesaw mechanism with three heavy sterile neutrinos, the 3\times 3
Pontecorvo-Maki-Nakagawa-Sakata neutrino mixing matrix V will not be exactly
unitary. This kind of indirect unitarity violation can be probed in a precision
reactor antineutrino oscillation experiment, but it may be entangled with
terrestrial matter effects as both of them are very small. We calculate the
probability of \overline{\nu}_e \to \overline{\nu}_e oscillations in a good
analytical approximation, and find that, besides the zero-distance effect, the
effect of unitarity violation is always smaller than matter effects, and their
entanglement does not appear until the next-to-leading-order oscillating terms
are taken into account. Given a 20-kiloton JUNO-like liquid scintillator
detector, we reaffirm that terrestrial matter effects should not be neglected
but indirect unitarity violation makes no difference, and demonstrate that the
experimental sensitivities to the neutrino mass ordering and a precision
measurement of \theta_{12} and \Delta_{21} \equiv m^2_2 - m^2_1 are robust.Comment: 21 pages, 6 figures, version to be published in PLB, more discussions
adde
Probing Half-odd Topological Number with Cold Atoms in a Non-Abelian Optical Lattice
We propose an experimental scheme to probe the contribution of a single Dirac
cone to the Hall conductivity as half-odd topological number sequence. In our
scheme, the quantum anomalous Hall effect as in graphene is simulated with cold
atoms trapped in an optical lattice and subjected to a laser-induced
non-Abelian gauge field. By tuning the laser intensity to change the gauge
flux, the energies of the four Dirac points in the first Brillouin zone are
shifted with each other and the contribution of the single Dirac cone to the
total atomic Hall conductivity is manifested. We also show such manifestation
can be experimentally probed with atomic density profile measurements.Comment: 5 pages, 3 figure
Coupled-channel analysis of the possible , and molecular states
We perform a coupled-channel study of the possible deuteron-like molecules
with two heavy flavor quarks, including the systems of with
double charm, with double bottom and
with both charm and bottom, within the
one-boson-exchange model. In our study, we take into account the S-D mixing
which plays an important role in the formation of the loosely bound deuteron,
and particularly, the coupled-channel effect in the flavor space. According to
our calculation, the states and
with double charm, the states
,
and
with double bottom, and
the states and
with both charm and bottom are good
molecule candidates. However, the existence of the states
with double charm and
with both charm and bottom is ruled out.Comment: 1 figure added, published in Physical Review
Isospin effect on nuclear stopping in intermediate energy Heavy Ion Collisions
By using the Isospin Dependent Quantum Molecular Dynamics Model (IQMD), we
study the dependence of nuclear stopping Q_{ZZ}/A and R in intermediate energy
heavy ion collisions on system size, initial N/Z, isospin symmetry potential
and the medium correction of two-body cross sections. We find the effect of
initial N/Z ratio, isospin symmetry potential on stopping is weak. The
excitation function of Q_{ZZ}/A and R depends on the form of medium correction
of two-body cross sections, the equation of state of nuclear matter (EOS). Our
results show the behavior of the excitation function of Q_{ZZ}/A and R can
provide clearer information of the isospin dependence of the medium correction
of two-body cross sections.Comment: 3 pages including 4 figure
- …