41 research outputs found

    Efficient Mixed Transformer for Single Image Super-Resolution

    Full text link
    Recently, Transformer-based methods have achieved impressive results in single image super-resolution (SISR). However, the lack of locality mechanism and high complexity limit their application in the field of super-resolution (SR). To solve these problems, we propose a new method, Efficient Mixed Transformer (EMT) in this study. Specifically, we propose the Mixed Transformer Block (MTB), consisting of multiple consecutive transformer layers, in some of which the Pixel Mixer (PM) is used to replace the Self-Attention (SA). PM can enhance the local knowledge aggregation with pixel shifting operations. At the same time, no additional complexity is introduced as PM has no parameters and floating-point operations. Moreover, we employ striped window for SA (SWSA) to gain an efficient global dependency modelling by utilizing image anisotropy. Experimental results show that EMT outperforms the existing methods on benchmark dataset and achieved state-of-the-art performance. The Code is available at https://github. com/Fried-Rice-Lab/EMT.git.Comment: Super-resolution, Long-range attention, Transformer, Localit

    Clinical value of preferred endoscopic ultrasound-guided antegrade surgery in the treatment of extrahepatic bile duct malignant obstruction

    Get PDF
    Objectives: To explore the clinical value of preferred ultrasound endoscopic guided biliary drainage in patients with extrahepatic biliary obstruction with intrahepatic biliary ectasis. Methods: A total of 58 patients with malignant obstruction and intrahepatic bile duct expansion, including 32 males, 26 females and median age 65 (58‒81) were selected. A prospective randomized controlled study was randomized into EUS-AG and ERCP-BD, with 28 patients in EUS-AG and 30 in ERCP-BD. The efficacy of the two treatments, operation success rate, operation time, the incidence of complications, hospitalization days, cost, unimpeded stent duration, and survival time were compared. Results: 1) The surgical success rate in group EUS-AG was 100%, and in group, ERCP-BD was 96.67%. There was no statistical difference in surgical success rate in the two groups (p>0.05). 2) Average operating time in EUS-AG was (23.69±11.57) min, and in ERCP-BD was (36.75±17.69) min. The difference between the two groups has statistical significance (p<0.05). 3) The clinical symptoms of successful patients were significantly relieved. Compared with the preoperative procedure, the differences in group levels had statistical significance (p<0.05); TBIL, ALP, WBC and CRP levels, no statistical significance difference in groups (p>0.05). Conclusion: EUS-AG operation has short time, low incidence of complications, safe, effective, and can be used as the preferred treatment plan for patients with extrahepatic biliary duct malignant obstruction associated with intrahepatic biliary duct expansion; EUS-AG operation has more unique clinical advantages for patients with altered gastrointestinal anatomy or upper gastrointestinal obstruction

    Image Super-Resolution using Efficient Striped Window Transformer

    Full text link
    Transformers have achieved remarkable results in single-image super-resolution (SR). However, the challenge of balancing model performance and complexity has hindered their application in lightweight SR (LSR). To tackle this challenge, we propose an efficient striped window transformer (ESWT). We revisit the normalization layer in the transformer and design a concise and efficient transformer structure to build the ESWT. Furthermore, we introduce a striped window mechanism to model long-term dependencies more efficiently. To fully exploit the potential of the ESWT, we propose a novel flexible window training strategy that can improve the performance of the ESWT without additional cost. Extensive experiments show that ESWT outperforms state-of-the-art LSR transformers, and achieves a better trade-off between model performance and complexity. The ESWT requires fewer parameters, incurs faster inference, smaller FLOPs, and less memory consumption, making it a promising solution for LSR.Comment: SOTA lightweight super-resolution transformer. 8 pages, 9 figures and 6 tables. The Code is available at https://github.com/Fried-Rice-Lab/FriedRiceLa

    Radio pulsar B0950++08: Radiation in Magnetosphere and Sparks above Surface

    Full text link
    The nearby radio pulsar B0950++08 with full duty cycle is targeted by the Five-hundred-meter Aperture Spherical radio Telescope (FAST, 110 minutes allocated), via adopting polarization calibration on two ways of baseline determination, in order to understand its magnetospheric radiation geometry as well as the polar cap sparking. % The radiation of the main pulse could not be informative of magnetic field line planes due to its low linear polarization (<10%<10 \%) and the position angle jumps, and the polarization position angle in the pulse longitudes whose linear fractions are larger than ∼30% \sim 30 \% is thus fitted in the classical rotating vector model (RVM). % The best RVM fit indicates that the inclination angle, α\alpha, and the impact angle, β\beta, of this pulsar are 100.5∘100.5^{\circ} and −33.2∘-33.2^{\circ}, respectively, suggesting that the radio emission comes from two poles. % Polar cap sparking in the vacuum gap model, either the annular gap or the core gap, is therefore investigated in this RVM geometry, resulting in a high-altitude magnetospheric emission at heights from ∼0.25RLC\sim 0.25R_{\rm LC} to ∼0.56RLC\sim 0.56R_{\rm LC}, with RLCR_{\rm LC} the light cylinder radius. % It is evident that both sparking points of the main and inter pulses are located mainly away from the magnetic pole, that is meaningful in the physics of pulsar surface and is even relevant to pulsar's inner structure.Comment: 13 pages, 9 figures, submitte

    ChatCAD+: Towards a Universal and Reliable Interactive CAD using LLMs

    Full text link
    The integration of Computer-Assisted Diagnosis (CAD) with Large Language Models (LLMs) holds great potential in clinical applications, specifically in the roles of digital family doctors and clinic assistants. However, current works in this field are plagued by limitations, specifically a restricted scope of applicable image domains and the provision of unreliable medical advice This restricts their overall processing capabilities. Furthermore, the mismatch in writing style between LLMs and radiologists undermines their practical usefulness. To tackle these challenges, we introduce ChatCAD+, which is designed to be universal and reliable. It is capable of handling medical images from diverse domains and leveraging up-to-date information from reputable medical websites to provide reliable medical advice. Additionally, it incorporates a template retrieval system that improves report generation performance via exemplar reports, enabling seamless integration into existing clinical workflows. The source code is available at https://github.com/zhaozh10/ChatCAD.Comment: Authors Zihao Zhao, Sheng Wang, Jinchen Gu, Yitao Zhu contributed equally to this work and should be considered co-first author

    Long lead-time radar rainfall nowcasting method incorporating atmospheric conditions using long short-term memory networks

    Get PDF
    High-resolution radar rainfall data have great potential for rainfall predictions up to 6 h ahead (nowcasting); however, conventional extrapolation approaches based on in-built physical assumptions yield poor performance at longer lead times (3–6 h), which limits their operational utility. Moreover, atmospheric factors in radar estimate errors are often ignored. This study proposed a radar rainfall nowcasting method that attempts to achieve accurate nowcasting of 6 h using long short-term memory (LSTM) networks. Atmospheric conditions were considered to reduce radar estimate errors. To build radar nowcasting models based on LSTM networks (LSTM-RN), approximately 11 years of radar, gauge rainfall, and atmospheric data from the UK were obtained. Compared with the models built on optical flow (OF-RN) and random forest (RF-RN), LSTM-RN had the lowest root-mean-square errors (RMSE), highest correlation coefficients (COR), and mean bias errors closest to 0. Furthermore, LSTM-RN showed a growing advantage at longer lead times, with the RMSE decreasing by 17.99% and 7.17% compared with that of OF-RN and RF-RN, respectively. The results also revealed a strong relationship between LSTM-RN performance and weather conditions. This study provides an effective solution for nowcasting radar rainfall at long lead times, which enhances the forecast value and supports practical utility

    Glucose metabolism reprogramming promotes immune escape of hepatocellular carcinoma cells

    Get PDF
    Hepatocellular carcinoma (HCC) is a complex process that plays an important role in its progression. Abnormal glucose metabolism in HCC cells can meet the nutrients required for the occurrence and development of liver cancer, better adapt to changes in the surrounding microenvironment, and escape the attack of the immune system on the tumor. There is a close relationship between reprogramming of glucose metabolism and immune escape. This article reviews the current status and progress of glucose metabolism reprogramming in promoting immune escape in liver cancer, aiming to provide new strategies for clinical immunotherapy of liver cancer

    Fusion of hyperspectral imaging (HSI) and RGB for identification of soybean kernel damages using ShuffleNet with convolutional optimization and cross stage partial architecture

    Get PDF
    Identification of soybean kernel damages is significant to prevent further disoperation. Hyperspectral imaging (HSI) has shown great potential in cereal kernel identification, but its low spatial resolution leads to external feature infidelity and limits the analysis accuracy. In this study, the fusion of HSI and RGB images and improved ShuffleNet were combined to develop an identification method for soybean kernel damages. First, the HSI-RGB fusion network (HRFN) was designed based on super-resolution and spectral modification modules to process the registered HSI and RGB image pairs and generate super-resolution HSI (SR-HSI) images. ShuffleNet improved with convolution optimization and cross-stage partial architecture (ShuffleNet_COCSP) was used to build classification models with the optimal image set of effective wavelengths (OISEW) of SR-HSI images obtained by support vector machine and ShuffleNet. High-quality fusion of HSI and RGB with the obvious spatial promotion and satisfactory spectral conservation was gained by HRFN. ShuffleNet_COCSP and OISEW obtained the optimal recognition performance of ACCp=98.36%, Params=0.805 M, and FLOPs=0.097 G, outperforming other classification methods and other types of images. Overall, the proposed method provides an accurate and reliable identification of soybean kernel damages and would be extended to analysis of other quality indicators of various crop kernels

    Searching for the nano-Hertz stochastic gravitational wave background with the Chinese Pulsar Timing Array Data Release I

    Full text link
    Observing and timing a group of millisecond pulsars (MSPs) with high rotational stability enables the direct detection of gravitational waves (GWs). The GW signals can be identified from the spatial correlations encoded in the times-of-arrival of widely spaced pulsar-pairs. The Chinese Pulsar Timing Array (CPTA) is a collaboration aiming at the direct GW detection with observations carried out using Chinese radio telescopes. This short article serves as a `table of contents' for a forthcoming series of papers related to the CPTA Data Release 1 (CPTA DR1) which uses observations from the Five-hundred-meter Aperture Spherical radio Telescope (FAST). Here, after summarizing the time span and accuracy of CPTA DR1, we report the key results of our statistical inference finding a correlated signal with amplitude \log A_{\rm c}= -14.4 \,^{+1.0}_{-2.8} for spectral index in the range of α∈[−1.8,1.5]\alpha\in [-1.8, 1.5] assuming a GW background (GWB) induced quadrupolar correlation. The search for the Hellings-Downs (HD) correlation curve is also presented, where some evidence for the HD correlation has been found that a 4.6-σ\sigma statistical significance is achieved using the discrete frequency method around the frequency of 14 nHz. We expect that the future International Pulsar Timing Array data analysis and the next CPTA data release will be more sensitive to the nHz GWB, which could verify the current results.Comment: 18 pages, 6 figures, submitted to "Research in astronomy and astrophysics" 22nd March 202

    Atypical radio pulsations from magnetar SGR 1935+2154

    Full text link
    Magnetars are neutron stars with extremely strong magnetic fields, frequently powering high-energy activity in X-rays. Pulsed radio emission following some X-ray outbursts have been detected, albeit its physical origin is unclear. It has long been speculated that the origin of magnetars' radio signals is different from those from canonical pulsars, although convincing evidence is still lacking. Five months after magnetar SGR 1935+2154's X-ray outburst and its associated Fast Radio Burst (FRB) 20200428, a radio pulsar phase was discovered. Here we report the discovery of X-ray spectral hardening associated with the emergence of periodic radio pulsations from SGR 1935+2154 and a detailed analysis of the properties of the radio pulses. The complex radio pulse morphology, which contains both narrow-band emission and frequency drifts, has not been seen before in other magnetars, but is similar to those of repeating FRBs - even though the luminosities are many orders of magnitude different. The observations suggest that radio emission originates from the outer magnetosphere of the magnetar, and the surface heating due to the bombardment of inward-going particles from the radio emission region is responsible for the observed X-ray spectral hardening.Comment: 47 pages, 11 figure
    corecore