57 research outputs found

    Tipping points near a delayed saddle node bifurcation with periodic forcing

    Full text link
    We consider the effect on tipping from an additive periodic forcing in a canonical model with a saddle node bifurcation and a slowly varying bifurcation parameter. Here tipping refers to the dramatic change in dynamical behavior characterized by a rapid transition away from a previously attracting state. In the absence of the periodic forcing, it is well-known that a slowly varying bifurcation parameter produces a delay in this transition, beyond the bifurcation point for the static case. Using a multiple scales analysis, we consider the effect of amplitude and frequency of the periodic forcing relative to the drifting rate of the slowly varying bifurcation parameter. We show that a high frequency oscillation drives an earlier tipping when the bifurcation parameter varies more slowly, with the advance of the tipping point proportional to the square of the ratio of amplitude to frequency. In the low frequency case the position of the tipping point is affected by the frequency, amplitude and phase of the oscillation. The results are based on an analysis of the local concavity of the trajectory, used for low frequencies both of the same order as the drifting rate of the bifurcation parameter and for low frequencies larger than the drifting rate. The tipping point location is advanced with increased amplitude of the periodic forcing, with critical amplitudes where there are jumps in the location, yielding significant advances in the tipping point. We demonstrate the analysis for two applications with saddle node-type bifurcations

    Can Brain Signals Reveal Inner Alignment with Human Languages?

    Full text link
    Brain Signals, such as Electroencephalography (EEG), and human languages have been widely explored independently for many downstream tasks, however, the connection between them has not been well explored. In this study, we explore the relationship and dependency between EEG and language. To study at the representation level, we introduced \textbf{MTAM}, a \textbf{M}ultimodal \textbf{T}ransformer \textbf{A}lignment \textbf{M}odel, to observe coordinated representations between the two modalities. We used various relationship alignment-seeking techniques, such as Canonical Correlation Analysis and Wasserstein Distance, as loss functions to transfigure features. On downstream applications, sentiment analysis and relation detection, we achieved new state-of-the-art results on two datasets, ZuCo and K-EmoCon. Our method achieved an F1-score improvement of 1.7% on K-EmoCon and 9.3% on Zuco datasets for sentiment analysis, and 7.4% on ZuCo for relation detection. In addition, we provide interpretations of the performance improvement: (1) feature distribution shows the effectiveness of the alignment module for discovering and encoding the relationship between EEG and language; (2) alignment weights show the influence of different language semantics as well as EEG frequency features; (3) brain topographical maps provide an intuitive demonstration of the connectivity in the brain regions. Our code is available at \url{https://github.com/Jason-Qiu/EEG_Language_Alignment}.Comment: EMNLP 2023 Finding

    Transfer Knowledge from Natural Language to Electrocardiography: Can We Detect Cardiovascular Disease Through Language Models?

    Full text link
    Recent advancements in Large Language Models (LLMs) have drawn increasing attention since the learned embeddings pretrained on large-scale datasets have shown powerful ability in various downstream applications. However, whether the learned knowledge by LLMs can be transferred to clinical cardiology remains unknown. In this work, we aim to bridge this gap by transferring the knowledge of LLMs to clinical Electrocardiography (ECG). We propose an approach for cardiovascular disease diagnosis and automatic ECG diagnosis report generation. We also introduce an additional loss function by Optimal Transport (OT) to align the distribution between ECG and language embedding. The learned embeddings are evaluated on two downstream tasks: (1) automatic ECG diagnosis report generation, and (2) zero-shot cardiovascular disease detection. Our approach is able to generate high-quality cardiac diagnosis reports and also achieves competitive zero-shot classification performance even compared with supervised baselines, which proves the feasibility of transferring knowledge from LLMs to the cardiac domain.Comment: EACL 202

    Benchmarking Robustness of Multimodal Image-Text Models under Distribution Shift

    Full text link
    Multimodal image-text models have shown remarkable performance in the past few years. However, evaluating robustness against distribution shifts is crucial before adopting them in real-world applications. In this work, we investigate the robustness of 12 popular open-sourced image-text models under common perturbations on five tasks (image-text retrieval, visual reasoning, visual entailment, image captioning, and text-to-image generation). In particular, we propose several new multimodal robustness benchmarks by applying 17 image perturbation and 16 text perturbation techniques on top of existing datasets. We observe that multimodal models are not robust to image and text perturbations, especially to image perturbations. Among the tested perturbation methods, character-level perturbations constitute the most severe distribution shift for text, and zoom blur is the most severe shift for image data. We also introduce two new robustness metrics (\textbf{MMI} for MultiModal Impact score and \textbf{MOR} for Missing Object Rate) for proper evaluations of multimodal models. We hope our extensive study sheds light on new directions for the development of robust multimodal models. More details can be found on the project webpage: \url{https://MMRobustness.github.io}.Comment: Accepted by Journal of Data-centric Machine Learning Research (DMLR) 202

    Semantics-Consistent Cross-domain Summarization via Optimal Transport Alignment

    Full text link
    Multimedia summarization with multimodal output (MSMO) is a recently explored application in language grounding. It plays an essential role in real-world applications, i.e., automatically generating cover images and titles for news articles or providing introductions to online videos. However, existing methods extract features from the whole video and article and use fusion methods to select the representative one, thus usually ignoring the critical structure and varying semantics. In this work, we propose a Semantics-Consistent Cross-domain Summarization (SCCS) model based on optimal transport alignment with visual and textual segmentation. In specific, our method first decomposes both video and article into segments in order to capture the structural semantics, respectively. Then SCCS follows a cross-domain alignment objective with optimal transport distance, which leverages multimodal interaction to match and select the visual and textual summary. We evaluated our method on three recent multimodal datasets and demonstrated the effectiveness of our method in producing high-quality multimodal summaries

    Converting ECG Signals to Images for Efficient Image-text Retrieval via Encoding

    Full text link
    Automated interpretation of electrocardiograms (ECG) has garnered significant attention with the advancements in machine learning methodologies. Despite the growing interest in automated ECG interpretation using machine learning, most current studies focus solely on classification or regression tasks and overlook a crucial aspect of clinical cardio-disease diagnosis: the diagnostic report generated by experienced human clinicians. In this paper, we introduce a novel approach to ECG interpretation, leveraging recent breakthroughs in Large Language Models (LLMs) and Vision-Transformer (ViT) models. Rather than treating ECG diagnosis as a classification or regression task, we propose an alternative method of automatically identifying the most similar clinical cases based on the input ECG data. Also, since interpreting ECG as images are more affordable and accessible, we process ECG as encoded images and adopt a vision-language learning paradigm to jointly learn vision-language alignment between encoded ECG images and ECG diagnosis reports. Encoding ECG into images can result in an efficient ECG retrieval system, which will be highly practical and useful in clinical applications. More importantly, our findings could serve as a crucial resource for providing diagnostic services in regions where only paper-printed ECG images are accessible due to past underdevelopment.Comment: 26 page

    MMSum: A Dataset for Multimodal Summarization and Thumbnail Generation of Videos

    Full text link
    Multimodal summarization with multimodal output (MSMO) has emerged as a promising research direction. Nonetheless, numerous limitations exist within existing public MSMO datasets, including insufficient maintenance, data inaccessibility, limited size, and the absence of proper categorization, which pose significant challenges. To address these challenges and provide a comprehensive dataset for this new direction, we have meticulously curated the \textbf{MMSum} dataset. Our new dataset features (1) Human-validated summaries for both video and textual content, providing superior human instruction and labels for multimodal learning. (2) Comprehensively and meticulously arranged categorization, spanning 17 principal categories and 170 subcategories to encapsulate a diverse array of real-world scenarios. (3) Benchmark tests performed on the proposed dataset to assess various tasks and methods, including \textit{video summarization}, \textit{text summarization}, and \textit{multimodal summarization}. To champion accessibility and collaboration, we will release the \textbf{MMSum} dataset and the data collection tool as fully open-source resources, fostering transparency and accelerating future developments. Our project website can be found at~\url{https://mmsum-dataset.github.io/}Comment: Project website: https://mmsum-dataset.github.io
    • …
    corecore