100,555 research outputs found

    Confinement of matter fields in compact (2+1)-dimensional QED theory of high-TcT_{c} superconductors

    Full text link
    We study confinement of matter fields in the effective compact (2+1)-dimensional QED theory of high-TcT_{c} superconductors. It is shown that the monopole configurations do not affect the propagator of gauge potential aμa_{\mu}. Based on this result, we found that: chiral symmetry breaking and confinement take place simultaneously in the antiferromagnetic state; neither monopole effect nor Anderson-Higgs mechanism can cause confinement in the d-wave superconducting state.Comment: 5 pages, no figure

    Automated parameters for troubled-cell indicators using outlier detection

    Get PDF
    In Vuik and Ryan (2014) we studied the use of troubled-cell indicators for discontinuity detection in nonlinear hyperbolic partial differential equations and introduced a new multiwavelet technique to detect troubled cells. We found that these methods perform well as long as a suitable, problem-dependent parameter is chosen. This parameter is used in a threshold which decides whether or not to detect an element as a troubled cell. Until now, these parameters could not be chosen automatically. The choice of the parameter has impact on the approximation: it determines the strictness of the troubled-cell indicator. An inappropriate choice of the parameter will result in detection (and limiting) of too few or too many elements. The optimal parameter is chosen such that the minimal number of troubled cells is detected and the resulting approximation is free of spurious oscillations. In this paper we will see that for each troubled-cell indicator the sudden increase or decrease of the indicator value with respect to the neighboring values is important for detection. Indication basically reduces to detecting the outliers of a vector (one dimension) or matrix (two dimensions). This is done using Tukey's boxplot approach to detect which coefficients in a vector are straying far beyond others (Tukey, 1977). We provide an algorithm that can be applied to various troubled-cell indication variables. Using this technique the problem-dependent parameter that the original indicator requires is no longer necessary as the parameter will be chosen automatically

    Spontaneous excitation of an accelerated multilevel atom in dipole coupling to the derivative of a scalar field

    Get PDF
    We study the spontaneous excitation of an accelerated multilevel atom in dipole coupling to the derivative of a massless quantum scalar field and separately calculate the contributions of the vacuum fluctuation and radiation reaction to the rate of change of the mean atomic energy of the atom. It is found that, in contrast to the case where a monopole like interaction between the atom and the field is assumed, there appear extra corrections proportional to the acceleration squared, in addition to corrections which can be viewed as a result of an ambient thermal bath at the Unruh temperature, as compared with the inertial case, and the acceleration induced correction terms show anisotropy with the contribution from longitudinal polarization being four times that from the transverse polarization for isotropically polarized accelerated atoms. Our results suggest that the effect of acceleration on the rate of change of the mean atomic energy is dependent not only on the quantum field to which the atom is coupled, but also on the type of the interaction even if the same quantum scalar field is considered.Comment: 11 pages, no figure

    Laser Mode Bifurcations Induced by PT\mathcal{PT}-Breaking Exceptional Points

    Full text link
    A laser consisting of two independently-pumped resonators can exhibit mode bifurcations that evolve out of the exceptional points (EPs) of the linear system at threshold. The EPs are non-Hermitian degeneracies occurring at the parity/time-reversal (PT\mathcal{PT}) symmetry breaking points of the threshold system. Above threshold, the EPs become bifurcations of the nonlinear zero-detuned laser modes, which can be most easily observed by making the gain saturation intensities in the two resonators substantially different. Small pump variations can then switch abruptly between different laser behaviors, e.g. between below-threshold and PT\mathcal{PT}-broken single-mode operation.Comment: 4 pages, 3 figure

    Quantum anti-Zeno effect without rotating wave approximation

    Get PDF
    In this paper, we systematically study the spontaneous decay phenomenon of a two-level system under the influences of both its environment and continuous measurements. In order to clarify some well-established conclusions about the quantum Zeno effect (QZE) and the quantum anti-Zeno effect (QAZE), we do not use the rotating wave approximation (RWA) in obtaining an effective Hamiltonian. We examine various spectral distributions by making use of our present approach in comparison with other approaches. It is found that with respect to a bare excited state even without the RWA, the QAZE can still happen for some cases, e.g., the interacting spectra of hydrogen. But for a physical excited state, which is a renormalized dressed state of the atomic state, the QAZE disappears and only the QZE remains. These discoveries inevitably show a transition from the QZE to the QAZE as the measurement interval changes.Comment: 14 pages, 8 figure

    Transport in gapped bilayer graphene: the role of potential fluctuations

    Full text link
    We employ a dual-gated geometry to control the band gap \Delta in bilayer graphene and study the temperature dependence of the resistance at the charge neutrality point, RNP(T), from 220 to 1.5 K. Above 5 K, RNP(T) is dominated by two thermally activated processes in different temperature regimes and exhibits exp(T3/T)^{1/3} below 5 K. We develop a simple model to account for the experimental observations, which highlights the crucial role of localized states produced by potential fluctuations. The high temperature conduction is attributed to thermal activation to the mobility edge. The activation energy approaches \Delta /2 at large band gap. At intermediate and low temperatures, the dominant conduction mechanisms are nearest neighbor hopping and variable-range hopping through localized states. Our systematic study provides a coherent understanding of transport in gapped bilayer graphene.Comment: to appear in Physical Review B: Rapid Com

    Fiber Based Multiple-Access Optical Frequency Dissemination

    Full text link
    We demonstrate a fiber based multiple-access optical frequency dissemination scheme. Without using any additional laser sources, we reproduce the stable disseminated frequency at an arbitrary point of fiber link. Relative frequency stability of 3E10^{-16}/s and 4E10^{-18}/10^4s is obtained. A branching fiber network for highly-precision synchronization of optical frequency is made possible by this method and its applications are discussed.Comment: 5 pages, 3 figure

    Chiral Symmetry and the Parity-Violating NNÏ€NN\pi Yukawa Coupling

    Get PDF
    We construct the complete SU(2) parity-violating (PV) π,N,Δ\pi, N, \Delta interaction Lagrangian with one derivative, and calculate the chiral corrections to the PV Yukawa NNπNN\pi coupling constant hπh_\pi through O(1/Λχ3){\cal O}(1/\Lambda_\chi^3) in the leading order of heavy baryon expansion. We discuss the relationship between the renormalized \hpi, the measured value of \hpi, and the corresponding quantity calculated microscopically from the Standard Model four-quark PV interaction.Comment: RevTex, 26 pages + 5 PS figure
    • …
    corecore