175 research outputs found

    Proteomics of adjacent-to-tumor samples uncovers clinically relevant biological events in hepatocellular carcinoma

    Get PDF
    Normal adjacent tissues (NATs) of hepatocellular carcinoma (HCC) differ from healthy liver tissues and their heterogeneity may contain biological information associated with disease occurrence and clinical outcome that has yet to be fully evaluated at the proteomic level. This study provides a detailed description of the heterogeneity of NATs and the differences between NATs and healthy livers and revealed that molecular features of tumor subgroups in HCC were partially reflected in their respective NATs. Proteomic data classified HCC NATs into two subtypes (Subtypes 1 and 2), and Subtype 2 was associated with poor prognosis and high-risk recurrence. The pathway and immune features of these two subtypes were characterized. Proteomic differences between the two NAT subtypes and healthy liver tissues were further investigated using data-independent acquisition mass spectrometry, revealing the early molecular alterations associated with the progression from healthy livers to NATs. This study provides a high-quality resource for HCC researchers and clinicians and may significantly expand the knowledge of tumor NATs to eventually benefit clinical practice

    Innovations in Human Stem Cell Research: A Holy Grail for Regenerative Medicine

    Get PDF
    Stem cells are unspecialized cells capable of renewing themselves and giving rise to differentiated and specialized cell subtypes. There are two general categories of stem cells, i.e., pluripotent stem cells capable of differentiation into any cell type in the human body and multipotent adult stem cells maintaining tissue homeostasis in postnatal life. Investigations in both these categories of stem cells have expanded our knowledge on human organogenesis and tissue regeneration and have suggested potential therapeutic functions of stem cells in regenerative medicine. The advent of induced pluripotent stem cell (iPSC) technology a decade ago further revolutionized stem cell biology and has given rise to the translation of stem cell-based therapies. This chapter will summarize some of the exciting progress and challenges in the applications of iPSC-derived stem cells and adult stem cells and the potential of translational and clinical research of these stem cells in regenerative medicine

    Full color transflective cholesteric liquid crystal display with slant reflectors above transmissive pixels

    Get PDF
    A device and method for making full color cholesteric displays such as a narrow band and a broad band cholesteric display using high birefringence LC materials with color filtering processes. The invention includes positioning slant reflector(s) in the transmissive portion of the display to reflect backlight into reflection pixels. The LCD can display the same color images in both reflective and transmissive modes, maintain good readability in any ambient, has low power consumption, high brightness, full color capability and has a fabrication process that is compatible with conventional LCD fabrication

    Efficacy of Human Placental-Derived Stem Cells in Collagen VII Knockout (Recessive Dystrophic Epidermolysis Bullosa) Animal Model

    Get PDF
    Recessive dystrophic epidermolysis bullosa (RDEB) is a devastating inherited skin blistering disease caused by mutations in the COL7A1 gene that encodes type VII collagen (C7), a major structural component of anchoring fibrils at the dermal-epidermal junction (DEJ). We recently demonstrated that human cord blood-derived unrestricted somatic stem cells promote wound healing and ameliorate the blistering phenotype in a RDEB (col7a1(-/-) ) mouse model. Here, we demonstrate significant therapeutic effect of a further novel stem cell product in RDEB, that is, human placental-derived stem cells (HPDSCs), currently being used as human leukocyte antigen-independent donor cells with allogeneic umbilical cord blood stem cell transplantation in patients with malignant and nonmalignant diseases. HPDSCs are isolated from full-term placentas following saline perfusion, red blood cell depletion, and volume reduction. HPDSCs contain significantly higher level of both hematopoietic and nonhematopoietic stem and progenitor cells than cord blood and are low in T cell content. A single intrahepatic administration of HPDSCs significantly elongated the median life span of the col7a1(-/-) mice from 2 to 7 days and an additional intrahepatic administration significantly extended the median life span to 18 days. We further demonstrated that after intrahepatic administration, HPDSCs engrafted short-term in the organs affected by RDEB, that is, skin and gastrointestinal tract of col7a1(-/-) mice, increased adhesion at the DEJ and deposited C7 even at 4 months after administration of HPDSCs, without inducing anti-C7 antibodies. This study warrants future clinical investigation to determine the safety and efficacy of HPDSCs in patients with severe RDEB. Stem Cells Translational Medicine 2018

    Effect of Different Arbuscular Mycorrhizal Fungi on Growth and Physiology of Maize at Ambient and Low Temperature Regimes

    Get PDF
    The effect of four different arbuscular mycorrhizal fungi (AMF) on the growth and lipid peroxidation, soluble sugar, proline contents, and antioxidant enzymes activities of Zea mays L. was studied in pot culture subjected to two temperature regimes. Maize plants were grown in pots filled with a mixture of sandy and black soil for 5 weeks, and then half of the plants were exposed to low temperature for 1 week while the rest of the plants were grown under ambient temperature and severed as control. Different AMF resulted in different root colonization and low temperature significantly decreased AM colonization. Low temperature remarkably decreased plant height and total dry weight but increased root dry weight and root-shoot ratio. The AM plants had higher proline content compared with the non-AM plants. The maize plants inoculated with Glomus etunicatum and G. intraradices had higher malondialdehyde and soluble sugar contents under low temperature condition. The activities of catalase (CAT) and peroxidase of AM inoculated maize were higher than those of non-AM ones. Low temperature noticeably decreased the activities of CAT. The results suggest that low temperature adversely affects maize physiology and AM symbiosis can improve maize seedlings tolerance to low temperature stress

    High-efficiency 100-W Kerr-lens mode-locked Yb:YAG thin-disk oscillator

    Get PDF
    We demonstrate a Kerr-lens mode-locked femtosecond Yb:YAG thin-disk oscillator and investigate the approach to increase the optical-to-optical efficiency based on the scheme of direct multiple passes of the laser beam through the thin-disk medium. With twelve passes through the thin disk, 266-fs pulses were delivered from the oscillator with an average power of 105.6 W at a repetition rate of 20 MHz. The corresponding optical-to-optical efficiency is 31.1%, which is, to the best of our knowledge, the highest efficiency of any mode-locked thin-disk oscillator with pulse duration below 300 fs. This demonstration paves the way to even more efficient mode-locked femtosecond thin-disk oscillators, and provides an excellent laser source for the applications such as non-linear frequency conversion and high-precision industrial processing

    Single-Cell Transcriptome Analyses Reveal Signals to Activate Dormant Neural Stem Cells

    Get PDF
    SummaryThe scarcity of tissue-specific stem cells and the complexity of their surrounding environment have made molecular characterization of these cells particularly challenging. Through single-cell transcriptome and weighted gene co-expression network analysis (WGCNA), we uncovered molecular properties of CD133+/GFAP− ependymal (E) cells in the adult mouse forebrain neurogenic zone. Surprisingly, prominent hub genes of the gene network unique to ependymal CD133+/GFAP− quiescent cells were enriched for immune-responsive genes, as well as genes encoding receptors for angiogenic factors. Administration of vascular endothelial growth factor (VEGF) activated CD133+ ependymal neural stem cells (NSCs), lining not only the lateral but also the fourth ventricles and, together with basic fibroblast growth factor (bFGF), elicited subsequent neural lineage differentiation and migration. This study revealed the existence of dormant ependymal NSCs throughout the ventricular surface of the CNS, as well as signals abundant after injury for their activation
    • …
    corecore