89 research outputs found

    Analysis of Archived Residual Newborn Screening Blood Spots After Whole Genome Amplification

    Get PDF
    Deidentified newborn screening bloodspot samples (NBS) represent a valuable potential resource for genomic research if impediments to whole exome sequencing of NBS deoxyribonucleic acid (DNA), including the small amount of genomic DNA in NBS material, can be overcome. For instance, genomic analysis of NBS could be used to define allele frequencies of disease-associated variants in local populations, or to conduct prospective or retrospective studies relating genomic variation to disease emergence in pediatric populations over time. In this study, we compared the recovery of variant calls from exome sequences of amplified NBS genomic DNA to variant calls from exome sequencing of non-amplified NBS DNA from the same individuals. Results: Using a standard alignment-based Genome Analysis Toolkit (GATK), we find 62,000-76,000 additional variants in amplified samples. After application of a unique kmer enumeration and variant detection method (RUFUS), only 38,000-47,000 additional variants are observed in amplified gDNA. This result suggests that roughly half of the amplification-introduced variants identified using GATK may be the result of mapping errors and read misalignment. Conclusions: Our results show that it is possible to obtain informative, high-quality data from exome analysis of whole genome amplified NBS with the important caveat that different data generation and analysis methods can affect variant detection accuracy, and the concordance of variant calls in whole-genome amplified and non-amplified exomes.National Institute of Health P01HD067244, NS076465, R01ES021006Nutritional Science

    Association between CFL1 gene polymorphisms and spina bifida risk in a California population

    Get PDF
    BACKGROUND: CFL1 encodes human non-muscle cofilin (n-cofilin), which is an actin-depolymerizing factor and is essential in cytokinesis, endocytosis, and in the development of all embryonic tissues. Cfl1 knockout mice exhibit failure of neural tube closure at E10.5 and die in utero. We hypothesized that genetic variation within the human CFL1 gene may alter the protein's function and result in defective actin depolymerizing and cellular activity during neural tube closure. Such alterations may be associated with an increased risk for neural tube defects (NTDs). METHODS: Having re-sequenced the human CFL1 gene and identified five common single nucleotide polymorphisms (SNPs) in our target population, we investigated whether there existed a possible association between the genetic variations of the CFL1 gene and risk of spina bifida. Samples were obtained from a large population-based case-control study in California. Allele association, genotype association and haplotype association were evaluated in two different ethnicity groups, non-Hispanic white and Hispanic white. RESULTS: Homozygosity for the minor alleles of the SNPs studied (rs652021, rs665306, rs667555, rs4621 and rs11227332) appeared to produce an increased risk for spina bifida. Subjects with the haplotype composed of all minor alleles (CCGGT) appeared to have increased spina bifida risk (OR = 1.6, 95% CI: 0.9~2.9), however, this finding is not statistically significant likely due to limited sample size. CONCLUSION: The sequence variation of human CFL1 gene is a genetic modifier for spina bifida risk in this California population

    Epigenetic profiles in children with a neural tube defect; a case-control study in two populations

    Get PDF
    Folate deficiency is implicated in the causation of neural tube defects (NTDs). The preventive effect of periconceptional folic acid supplement use is partially explained by the treatment of a deranged folate-dependent one carbon metabolism, which provides methyl groups for DNA-methylation as an epigenetic mechanism. Here, we hypothesize that variations in DNA-methylation of genes implicated in the development of NTDs and embryonic growth are part of the underlying mechanism. In 48 children with a neural tube defect and 62 controls from a Dutch case-control study and 34 children with a neural tube defect and 78 controls from a Texan case-control study, we measured the DNA-methylation levels of imprinted candidate genes (IGF2-DMR, H19, KCNQ1OT1) and non-imprinted genes (the LEKR/CCNL gene region associated with birth weight, and MTHFR and VANGL1 associated with NTD). We used the MassARRAY EpiTYPER assay from Sequenom for the assessment of DNA-methylation. Linear mixed model analysis was used to estimate associations between DNA-methylation levels of the genes and a neural tube defect. In the Dutch study group, but not in the Texan study group we found a significant association between the risk of having an NTD and DNA methylation levels of MTHFR (absolute decrease in methylation of -0.33% in cases, P-value = 0.001), and LEKR/CCNL (absolute increase in methylation: 1.36% in cases, P-value = 0.048), and a borderline significant association for VANGL (absolute increase in methylation: 0.17% in cases, P-value = 0.063). Only the association between MTHFR and NTD-risk remained significant after multiple testing correction. The associations in the Dutch study were not replicated in the Texan study. We conclude that the associations between NTDs and the methylation of the MTHFR gene, and maybe VANGL and LEKKR/CNNL, are in line with previous studies showing polymorphisms in the same genes in association with NTDs and embryonic development, respectively

    Autism-Like Behavior and Epigenetic Changes Associated with Autism as Consequences of In Utero Exposure to Environmental Pollutants in a Mouse Model

    Get PDF
    We tested the hypothesis that in utero exposure to heavy metals increases autism-like behavioral phenotypes in adult animals and induces epigenetic changes in genes that have roles in the etiology of autism. Mouse dams were treated with cadmium, lead, arsenate, manganese, and mercury via drinking water from gestational days (E) 1–10. Valproic acid (VPA) injected intraperitoneally once on (E) 8.5 served as a positive control. Young male offspring were tested for behavioral deficits using four standardized behavioral assays. In this study, in utero exposure to heavy metals resulted in multiple behavioral abnormalities that persisted into adulthood. VPA and manganese induced changes in perseverative/impulsive behavior and social dominance behavior, arsenic caused changes only in perseverative/impulsive behavior, and lead induced abnormalities in social interaction in comparison to the control animals. Brain samples from Mn, Pb, and VPA treated and control animals were evaluated for changes in CpG island methylation in promoter regions and associated changes in gene expression. The Chd7 gene, essential for neural crest cell migration and patterning, was found to be hypomethylated in each experimental animal tested compared to water-treated controls. Furthermore, distinct patterns of CpG island methylation yielded novel candidate genes for further investigation

    Picturing Electron Capture to the Continuum in the Transfer Ionization of Intermediate-Energy He²⁺ Collisions with Argon

    Get PDF
    Electron emission occurring in transfer ionization for He2+ collisions with argon has been investigated using cold target recoil ion momentum spectroscopy. The double differential cross sections for electron capture to the continuum of the projectile (cusp-shaped electrons) are presented for collision energies from 17.5 to 75 keV/u. For an energy of 30 keV/u, we find a maximum in the experimental ratio of the cusp-shaped electron yield to the total electron yield. This result is explained in terms of the velocity matching between the projectile ion and the electron initially bound to the target. One of the important issues for double electron transitions is the role of electron-electron correlation. If this correlation is weak, then the transfer-ionization process can be viewed as two separate sequential processes. If this correlation is strong, then the transfer-ionization process would happen simultaneously and not sequentially. Our experimental and theoretical results indicate that correlation is weak and that the first step is target ionization followed by charge capture

    Maternal–fetal metabolic gene–gene interactions and risk of neural tube defects

    Get PDF
    Single-gene analyses indicate that maternal genes associated with metabolic conditions (e.g., obesity) may influence the risk of neural tube defects (NTDs). However, to our knowledge, there have been no assessments of maternal-fetal metabolic gene-gene interactions and NTDs. We investigated 23 single nucleotide polymorphisms among 7 maternal metabolic genes (ADRB3, ENPP1, FTO, LEP, PPARG, PPARGC1A, and TCF7L2) and 2 fetal metabolic genes (SLC2A2 and UCP2). Samples were obtained from 737 NTD case-parent triads included in the National Birth Defects Prevention Study for birth years 1999–2007. We used a 2-step approach to evaluate maternal-fetal gene-gene interactions. First, a case-only approach was applied to screen all potential maternal and fetal interactions (n=76), as this design provides greater power in the assessment of gene-gene interactions compared to other approaches. Specifically, ordinal logistic regression was used to calculate the odds ratio (OR) and 95% confidence interval (CI) for each maternal-fetal gene-gene interaction, assuming a log-additive model of inheritance. Due to the number of comparisons, we calculated a corrected p-value (q-value) using the false discovery rate. Second, we confirmed all statistically significant interactions (q<0.05) using a log-linear approach among case-parent triads. In step 1, there were 5 maternal-fetal gene-gene interactions with q<0.05. The “top hit” was an interaction between maternal ENPP1 rs1044498 and fetal SLC2A2 rs6785233 (interaction OR=3.65, 95% CI: 2.32–5.74, p=2.09×10−8, q=0.001), which was confirmed in step 2 (p=0.00004). Our findings suggest that maternal metabolic genes associated with hyperglycemia and insulin resistance and fetal metabolic genes involved in glucose homeostasis may interact to increase the risk of NTDs

    Multisite Evaluation and Validation of a Sensitive Diagnostic and Screening System for Spinal Muscular Atrophy that Reports SMN1 and SMN2 Copy Number, along with Disease Modifier and Gene Duplication Variants

    Get PDF
    Spinal muscular atrophy is a severe autosomal recessive disease caused by disruptions in the SMN1 gene. The nearly identical SMN2 gene copy number is associated with disease severity. SMN1 duplication markers, such as c.*3+80T>G and c.*211_*212del, can assess residual carrier risk. An SMN2 disease modifier (c.859G>C) can help inform prognostic outcomes. The emergence of multiple precision gene therapies for spinal muscular atrophy requires accurate and rapid detection of SMN1 and SMN2 copy numbers to enable early treatment and optimal patient outcomes. We developed and evaluated a singletube PCR/capillary electrophoresis assay system that quantifies SMN1/2 copy numbers and genotypes three additional clinically relevant variants. Analytical validation was performed with human cell lines and whole blood representing varying SMN1/2 copies on four capillary electrophoresis instrument models. In addition, four independent laboratories used the assay to test 468 residual clinical genomic DNA samples. The results were >98.3% concordant with consensus SMN1/2 exon 7 copy numbers, determined using multiplex ligation-dependent probe amplification and droplet digital PCR, and were 100% concordant with Sanger sequencing for the three variants. Furthermore, copy number values were 98.6% (SMN1) and 97.1% (SMN2) concordant to each laboratory's own reference results. (J Mol Diag

    Diabetes and Obesity-Related Genes and the Risk of Neural Tube Defects in the National Birth Defects Prevention Study

    Get PDF
    Few studies have evaluated genetic susceptibility related to diabetes and obesity as a risk factor for neural tube defects (NTDs). The authors investigated 23 single nucleotide polymorphisms among 9 genes (ADRB3, ENPP1, FTO, LEP, PPARG, PPARGC1A, SLC2A2, TCF7L2, and UCP2) associated with type 2 diabetes or obesity. Samples were obtained from 737 NTD case-parent triads included in the National Birth Defects Prevention Study during 1999–2007. Log-linear models were used to evaluate maternal and offspring genetic effects. After application of the false discovery rate, there were 5 significant maternal genetic effects. The less common alleles at the 4 FTO single nucleotide polymorphisms showed a reduction of NTD risk (for rs1421085, relative risk (RR) = 0.73 (95% confidence interval (CI): 0.62, 0.87); for rs8050136, RR = 0.79 (95% CI: 0.67, 0.93); for rs9939609, RR = 0.79 (95% CI: 0.67, 0.94); and for rs17187449, RR = 0.80 (95% CI: 0.68, 0.95)). Additionally, maternal LEP rs2071045 (RR = 1.31, 95% CI: 1.08, 1.60) and offspring UCP2 rs660339 (RR = 1.32, 95% CI: 1.06, 1.64) were associated with NTD risk. Furthermore, the maternal genotype for TCF7L2 rs3814573 suggested an increased NTD risk among obese women. These findings indicate that maternal genetic variants associated with glucose homeostasis may modify the risk of having an NTD-affected pregnancy

    Genes encoding critical transcriptional activators for murine neural tube development and human spina bifida: a case-control study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Spina bifida is a malformation of the neural tube and is the most common of neural tube defects (NTDs). The etiology of spina bifida is largely unknown, although it is thought to be multi-factorial, involving multiple interacting genes and environmental factors. Mutations in transcriptional co-activator genes-<it>Cited2</it>, <it>p300</it>, <it>Cbp</it>, <it>Tfap2α</it>, <it>Carm1 </it>and <it>Cart1 </it>result in NTDs in murine models, thus prompt us to investigate whether homologues of these genes are associated with NTDs in humans.</p> <p>Methods</p> <p>Data and biological samples from 297 spina bifida cases and 300 controls were derived from a population-based case-control study conducted in California. 37 SNPs within <it>CITED2</it>, <it>EP300</it>, <it>CREBBP</it>, <it>TFAP2A</it>, <it>CARM1 </it>and <it>ALX1 </it>were genotyped using an ABI SNPlex assay. Odds ratios and 95% confidence intervals were calculated for alleles, genotypes and haplotypes to evaluate the risk for spina bifida.</p> <p>Results</p> <p>Several SNPs showed increased or decreased risk, including <it>CITED2 </it>rs1131431 (OR = 5.32, 1.04~27.30), <it>EP300 </it>rs4820428 (OR = 1.30, 1.01~1.67), <it>EP300 </it>rs4820429 (OR = 0.50, 0.26~0.50, in whites, OR = 0.7, 0.49~0.99 in all subjects), <it>EP300 </it>rs17002284 (OR = 0.43, 0.22~0.84), <it>TFAP2A </it>rs3798691 (OR = 1.78, 1.13~2.87 in Hispanics), <it>CREBBP </it>rs129986 (OR = 0.27, 0.11~0.69), <it>CARM1 </it>rs17616105 (OR = 0.41, 0.22~0.72 in whites). In addition, one haplotype block in <it>EP300 </it>and one in <it>TFAP2A </it>appeared to be associated with increased risk.</p> <p>Conclusions</p> <p>Modest associations were observed in <it>CITED2</it>, <it>EP300</it>, <it>CREBBP</it>, <it>TFAP2A </it>and <it>CARM1 </it>but not <it>ALX1</it>. However, these modest associations were not statistically significant after correction for multiple comparisons. Searching for potential functional variants and rare causal mutations is warranted in these genes.</p
    corecore