166 research outputs found

    Long-Stroke Nanopositioning Stage Driven by Piezoelectric Motor

    Get PDF

    Initial Self-Alignment for Marine Rotary SINS Using Novel Adaptive Kalman Filter

    Get PDF
    The accurate initial attitude is essential to affect the navigation result of Rotary Strapdown Inertial Navigation System (SINS), which is usually calculated by initial alignment. But marine mooring Rotary SINS has to withstand dynamic disturbance, such as the interference angular velocities and accelerations caused by surge and sway. In order to overcome the limit of dynamic disturbance under the marine mooring condition, an alignment method using novel adaptive Kalman filter for marine mooring Rotary SINS is developed in this paper. This alignment method using the gravity in the inertial frame as a reference is discussed to deal with the lineal and angular disturbances. Secondly, the system error model for fine alignment in the inertial frame as a reference is established. Thirdly, PWCS and SVD are used to analyze the observability of the system error model for fine alignment. Finally, a novel adaptive Kalman filter with measurement residual to estimate measurement noise variance is designed. The simulation results demonstrate that the proposed method can achieve better accuracy and stability for marine Rotary SINS

    I2^2-SDF: Intrinsic Indoor Scene Reconstruction and Editing via Raytracing in Neural SDFs

    Full text link
    In this work, we present I2^2-SDF, a new method for intrinsic indoor scene reconstruction and editing using differentiable Monte Carlo raytracing on neural signed distance fields (SDFs). Our holistic neural SDF-based framework jointly recovers the underlying shapes, incident radiance and materials from multi-view images. We introduce a novel bubble loss for fine-grained small objects and error-guided adaptive sampling scheme to largely improve the reconstruction quality on large-scale indoor scenes. Further, we propose to decompose the neural radiance field into spatially-varying material of the scene as a neural field through surface-based, differentiable Monte Carlo raytracing and emitter semantic segmentations, which enables physically based and photorealistic scene relighting and editing applications. Through a number of qualitative and quantitative experiments, we demonstrate the superior quality of our method on indoor scene reconstruction, novel view synthesis, and scene editing compared to state-of-the-art baselines.Comment: Accepted by CVPR 202

    Retrograde venous coil embolization prior to transarterial chemoembolization in hepatocellular carcinoma with arterio-hepatic venous shunts

    Get PDF
    PURPOSEThis study explored the clinical efficacy of transcatheter retrograde shunt occlusion with coils to prevent pulmonary oil or particle embolization prior to transarterial chemoembolization (TACE) in patients with artero-hepatic venous shunts (AHVS) secondary to hepatocellular carcinoma (HCC).METHODSFrom July 2017 to January 2021, 6 patients with advanced, unresectable HCC were found to have an AHVS by hepatic arteriography at the time of attempted TACE. The AHVS was embolized retrogradely with metal coils through a transfemoral or transjugular venous approach. After venous embolization and confirmation of the absence of the AHVS, TACE was performed using an emulsion of iodized oil and doxorubicin or drug-eluting beads. Follow-up computed tomography (CT) was performed within 1 month after the first TACE to evaluate the results and complications.RESULTSHepatic angiography after venous embolization showed that AHVS had utterly disappeared in all patients during the operation. The immediate technical success of the retrograde venous embolization was 100%. The AHVS had disappeared entirely during the follow-up period through triple-phase enhancement CT scanning. According to the modified response evaluation criteria in solid tumors, TACE in all 6 patients had a disease control response rate of 100% (6/6) with complete response in 2 patients and partial response in 4 patients. One patient died during the 6-month follow-up, and the other 5 were still alive. No complications related to pulmonary embolism occurred.CONCLUSIONRetrograde venous coil embolization of AHVS via the draining hepatic vein appears to be a safe, feasible, and effective treatment to allow TACE treatment without pulmonary embolic events. This approach appears to provide better tumor control and effectively decreases the occurrence of pulmonary embolism

    Isochorismatase domain-containing protein 1 (ISOC1) participates in DNA damage repair and inflammation-related pathways to promote lung cancer development

    Get PDF
    Background: The advent of novel molecular targets has dramatically changed the treatment landscape of lung cancer in recent years. Isochorismatase domain-containing protein 1 (ISOC1) has been reported as a potential biomarker in gastrointestinal cancer, while its function in lung cancer has not been determined.Methods: The expression levels and prognostic significance of ISOC1 were assessed using bioinformatic analysis. Overexpression of ISOC1 and miR-4633, and knockdown of ISOC1 in non-small cell lung cancer (NSCLC) cell lines were generated by lentiviral infection with overexpressed or shRNA plasmids. CRISPR/Cas9 system was applied to knockout ISOC1 in A549 cells. The functions of ISOC1 and miR-4633 in lung cancer development were investigated using cell proliferation, migration, and invasion assays. Xenograft tumor growth assays in nude mice were further assessed the effect of ISOC1 in the tumorigenesis of NSCLC in vivo. Cell cycle distribution analysis was performed to uncover the underlying mechanism of ISOC1 and miR-4633 in promoting NSCLC cell proliferation. Co-immunoprecipitation combined with mass spectrometry and RNA sequencing were performed to uncover the potential mechanism of ISOC1 in lung cancer development.Results: Our results found that ISOC1 expression was upregulated in NSCLC tissues and that increased expression of ISOC1 was significantly associated with worse disease-free survival in NSCLC patients. Overexpression of ISOC1 could increase the proliferation, viability, migration, and invasion of NSCLC cells. Furthermore, miR-4633, located in the first intron of ISOC1, could also promote tumor cell progression and metastasis. Mice xenograft tumor assay showed that knockout of ISOC1 could significantly inhibit tumor growth in vivo. Besides, co-immunoprecipitation combined with mass spectrometry assay revealed that ISOC1 interacted with the proteins of DNA damage repair pathways and that upregulated ISOC1 expression could significantly increase the number of DNA damage lesions. RNA sequencing analysis showed that the downstream signaling pathways mediated by ISOC1 were mainly inflammation-related.Conclusions: We demonstrated that ISOC1 and its intronic miR-4633, both of them could promote NSCLC cell proliferation, migration, invasion, and cell cycle progression. ISOC1 participates in DNA damage repair and inflammation to promote lung cancer development

    Ferroelectricity, Piezoelectricity, and Dielectricity of 0.06PMnN-0.94PZT(45/55) Thin Film on Silicon Substrate

    Get PDF
    The high piezoelectricity and high quality factor ferroelectric thin films are important for electromechanical applications especially the micro electromechanical system (MEMS). The ternary compound ferroelectric thin films 0.06Pb(Mn1/3, Nb2/3)O3 + 0.94Pb(Zr0.45, Ti0.55)O3 (0.06PMnN-0.94PZT(45/55)) were deposited on silicon(100) substrates by RF magnetron sputtering method considering that Mn and Nb doping will improve PZT properties in this research. For comparison, nondoped PZT(45/55) films were also deposited. The results show that both of thin films show polycrystal structures with the main (111) and (101) orientations. The transverse piezoelectric coefficients are e31,eff=−4.03 C/m2 and e31,eff=-3.5 C/m2, respectively. These thin films exhibit classical ferroelectricity, in which the coercive electric field intensities are 2Ec=147.31 kV/cm and 2Ec=135.44 kV/cm, and the saturation polarization Ps=30.86 μC/cm2 and Ps=17.74 μC/cm2, and the remnant polarization Pr=20.44 μC/cm2 and Pr=9.87 μC/cm2, respectively. Moreover, the dielectric constants and loss are εr=681 and D=5% and εr=537 and D=4.3%, respectively. In conclusion, 0.06PMnN-0.94PZT(45/55) thin films act better than nondoped films, even though their dielectric constants are higher. Their excellent ferroelectricity, piezoelectricity, and high power and energy storage property, especially the easy fabrication, integration realizable, and potentially high quality factor, make this kind of thin films available for the realistic applications
    • …
    corecore