766 research outputs found

    Strong enhancement of chlorophyll a concentration by a weak typhoon

    Full text link
    Recent studies demonstrate that chlorophyll a (chl a) concentrations in the surface ocean can be significantly enhanced due to typhoons. The present study investigated chl a concentrations in the middle of the South China Sea (SCS) from 1997-2007. Only the Category1 (minimal) Typhoon Hagibis (2007) had a notable effect on the chl a concentrations. Typhoon Hagibis had a strong upwelling potential due to its location near the equator, and the forcing time of the typhoon (>82 h) was much longer than the geostrophic adjustment time (~63 h). The higher upwelling velocity and the longer forcing time increased the depth of the mixed-layer, which consequently induced a strong phytoplankton bloom that accounted for about 30% of the total annual chl a concentration in the middle of the SCS. The implication is that the forcing time of a typhoon should be long enough to establish a strong upwelling and consequently for the induction of significant upper ocean responses.Comment: Typhoon-Ocean Environment interaction

    Searching for dark-matter induced neutrino signals in dwarf spheroidal galaxies using 10 years of IceCube public data

    Full text link
    This study searches for neutrino signals from 18 dwarf spheroidal galaxies (dSphs) using 10 years of publicly available muon-track data of the IceCube neutrino observatory. We apply an unbinned likelihood analysis on each of these dSphs to derive the significance the putative neutrino emission. To further enhance our sensitivity, we also stack all dSphs together to perform a joint analysis. However, no significant neutrino emission signal was detected in either the single-source or stacking analysis. Based on these null results, we derive constraints on the annihilation cross section of dark matter particles. Compared to the existing literature, our constraints via the channel χχ→μ+μ−\chi\chi\rightarrow\mu^+\mu^- are comparable to the ones from the VERITAS observations of dSphs

    Augmenting intrinsic fenton-like activities of MOF-derived catalysts via N-molecule-assisted self-catalyzed carbonization

    Get PDF
    To overcome the ever-growing organic pollutions in the water system, abundant efforts have been dedicated to fabricating efficient Fenton-like carbon catalysts. However, the rational design of carbon catalysts with high intrinsic activity remains a long-term goal. Herein, we report a new N-molecule-assisted self-catalytic carbonization process in augmenting the intrinsic Fenton-like activity of metal–organic-framework-derived carbon hybrids. During carbonization, the N-molecules provide alkane/ammonia gases and the formed iron nanocrystals act as the in situ catalysts, which result in the elaborated formation of carbon nanotubes (in situ chemical vapor deposition from alkane/iron catalysts) and micro-/meso-porous structures (ammonia gas etching). The obtained catalysts exhibited with abundant Fe/Fe–Nx/pyridinic-N active species, micro-/meso-porous structures, and conductive carbon nanotubes. Consequently, the catalysts exhibit high efficiency toward the degradation of different organic pollutions, such as bisphenol A, methylene blue, and tetracycline. This study not only creates a new pathway for achieving highly active Fenton-like carbon catalysts but also takes a step toward the customized production of advanced carbon hybrids for diverse energy and environmental applications

    Structure and Magnetotransport Properties of Epitaxial Nanocomposite La0.67Ca0.33MnO3:SrTiO3 Thin Films Grown by a Chemical Solution Approach

    Get PDF
    Epitaxial La0.67Ca0.33MnO3:SrTiO3 (LCMO:STO) composite thin films have been grown on single crystal LaAlO3(001) substrates by a cost effective polymer-assisted deposition method. Both x-ray diffraction and high-resolution transmission electron microscopy confirm the growth of epitaxial films with an epitaxial relationship between the films and the substrates as (002)film||(002)sub and [202]film||[202]sub. The transport property measurement shows that the STO phase significantly increases the resistivity and enhances the magnetoresistance (MR) effect of LCMO and moves the metal-insulator transition to lower temperatures. For example, the MR values measured at magnetic fields of 0 and 3 T are −44.6% at 255 K for LCMO, −94.2% at 125 K for LCMO:3% STO, and −99.4% at 100 K for LCMO:5% STO, respectively

    Structure and Magnetotransport Properties of Epitaxial Nanocomposite La0.67Ca0.33MnO3:SrTiO3 Thin Films Grown by a Chemical Solution Approach

    Get PDF
    Epitaxial La0.67Ca0.33MnO3:SrTiO3 (LCMO:STO) composite thin films have been grown on single crystal LaAlO3(001) substrates by a cost effective polymer-assisted deposition method. Both x-ray diffraction and high-resolution transmission electron microscopy confirm the growth of epitaxial films with an epitaxial relationship between the films and the substrates as (002)film||(002)sub and [202]film||[202]sub. The transport property measurement shows that the STO phase significantly increases the resistivity and enhances the magnetoresistance (MR) effect of LCMO and moves the metal-insulator transition to lower temperatures. For example, the MR values measured at magnetic fields of 0 and 3 T are −44.6% at 255 K for LCMO, −94.2% at 125 K for LCMO:3% STO, and −99.4% at 100 K for LCMO:5% STO, respectively
    • …
    corecore