2,019 research outputs found

    Defect and anisotropic gap induced quasi-one-dimensional modulation of local density of states in YBa2_2Cu3_3O7−ή_{7-\delta}

    Full text link
    Motivated by recent angle-resolved photoemission spectroscopy (ARPES) measurement that superconducting YBa2_2Cu3_3O7−ή_{7-\delta} (YBCO) exhibits a dx2−y2+sd_{x^2-y^2} + s-symmetry gap, we show possible quasi-one-dimensional modulations of local density of states in YBCO. These aniostropic gap and defect induced stripe structures are most conspicuous at higher biases and arise due to the nesting effect associated with a Fermi liquid. Observation of these spectra by scanning tunneling microscopy (STM) would unify the picture among STM, ARPES, and inelastic neutron scattering for YBCO.Comment: 4 pages, 4 figure

    Comments on Noncommutative ADHM Construction

    Get PDF
    We extend the method of matrix partition to obtain explicitly the gauge field for noncommutative ADHM construction in some general cases. As an application of this method we apply it to the U(2) 2-instanton and get explicit result for the gauge fields in the coincident instanton limit. We also easily apply it to the noncommutative 't Hooft instantons in the appendix.Comment: 17 pages, LaTeX; an appendix added, typos corrected, refs adde

    Carleson Measures and Toeplitz Operators

    Get PDF
    In this last chapter we shall describe an application of the Kobayashi distance to geometric function theory and functional analysis of holomorphic functions

    Future Directions in Parity Violation: From Quarks to the Cosmos

    Get PDF
    I discuss the prospects for future studies of parity-violating (PV) interactions at low energies and the insights they might provide about open questions in the Standard Model as well as physics that lies beyond it. I cover four types of parity-violating observables: PV electron scattering; PV hadronic interactions; PV correlations in weak decays; and searches for the permanent electric dipole moments of quantum systems.Comment: Talk given at PAVI 06 workshop on parity-violating interactions, Milos, Greece (May, 2006); 10 page

    On the Construction of Asymmetric Orbifold Models

    Full text link
    Various asymmetric orbifold models based on chiral shifts and chiral reflections are investigated. Special attention is devoted to the consistency of the models with two fundamental principles for asymmetric orbifolds : modular invariance and the existence of a proper Hilbert space formulation for states and operators. The interplay between these two principles is non-trivial. It is shown, for example, that their simultaneous requirement forces the order of a chiral reflection to be 4, instead of the naive 2. A careful explicit construction is given of the associated one-loop partition functions. At higher loops, the partition functions of asymmetric orbifolds are built from the chiral blocks of associated symmetric orbifolds, whose pairings are determined by degenerations to one-loop.Comment: 40 pages, no figures, typos correcte

    Two-Loop Superstrings V: Gauge Slice Independence of the N-Point Function

    Full text link
    A systematic construction of superstring scattering amplitudes for NN massless NS bosons to two loop order is given, based on the projection of supermoduli space onto super period matrices used earlier for the superstring measure in the first four papers of this series. The one important new difficulty arising for the NN-point amplitudes is the fact that the projection onto super period matrices introduces corrections to the chiral vertex operators for massless NS bosons which are not pure (1,0) differential forms. However, it is proved that the chiral amplitudes are closed differential forms, and transform by exact differentials on the worldsheet under changes of gauge slices. Holomorphic amplitudes and independence of left from right movers are recaptured after the extraction of terms which are Dolbeault exact in one insertion point, and de Rham closed in the remaining points. This allows a construction of GSO projected, integrated superstring scattering amplitudes which are independent of the choice of gauge slices and have only physical kinematical singularities.Comment: 33 pages, no figur

    Baryon Tri-local Interpolating Fields

    Full text link
    We systematically investigate tri-local (non-local) three-quark baryon fields with U_L(2)*U_R(2) chiral symmetry, according to their Lorentz and isospin (flavor) group representations. We note that they can also be called as "nucleon wave functions" due to this full non-locality. We study their chiral transformation properties and find all the possible chiral multiplets consisting J=1/2 and J=3/2 baryon fields. We find that the axial coupling constant |g_A| = 5/3 is only for nucleon fields belonging to the chiral representation (1/2,1)+(1,1/2) which contains both nucleon fields and Delta fields. Moreover, all the nucleon fields belonging to this representation have |g_A| = 5/3.Comment: 8 pages, 3 tables, accepted by EPJ

    A mathematical analysis of the evolution of perturbations in a modified Chaplygin gas model

    Get PDF
    One approach in modern cosmology consists in supposing that dark matter and dark energy are different manifestations of a single `quartessential' fluid. Following such idea, this work presents a study of the evolution of perturbations of density in a flat cosmological model with a modified Chaplygin gas acting as a single component. Our goal is to obtain properties of the model which can be used to distinguish it from another cosmological models which have the same solutions for the general evolution of the scale factor of the universe, without the construction of the power spectrum. Our analytical results, which alone can be used to uniquely characterize the specific model studied in our work, show that the evolution of the density contrast can be seen, at least in one particular case, as composed by a spheroidal wave function. We also present a numerical analysis which clearly indicates as one interesting feature of the model the appearence of peaks in the evolution of the density constrast.Comment: 21 pages, accepted for publication in General Relativity and Gravitatio

    Imaging Sources with Fast and Slow Emission Components

    Full text link
    We investigate two-proton correlation functions for reactions in which fast dynamical and slow evaporative proton emission are both present. In such cases, the width of the correlation peak provides the most reliable information about the source size of the fast dynamical component. The maximum of the correlation function is sensitive to the relative yields from the slow and fast emission components. Numerically inverting the correlation function allows one to accurately disentangle fast dynamical from slow evaporative emission and extract details of the shape of the two-proton source.Comment: 13 pages, 4 figure

    Measurements of the observed cross sections for e+e−→e^+e^-\to exclusive light hadrons containing π0π0\pi^0\pi^0 at s=3.773\sqrt s= 3.773, 3.650 and 3.6648 GeV

    Full text link
    By analyzing the data sets of 17.3, 6.5 and 1.0 pb−1^{-1} taken, respectively, at s=3.773\sqrt s= 3.773, 3.650 and 3.6648 GeV with the BES-II detector at the BEPC collider, we measure the observed cross sections for e+e−→π+π−π0π0e^+e^-\to \pi^+\pi^-\pi^0\pi^0, K+K−π0π0K^+K^-\pi^0\pi^0, 2(π+π−π0)2(\pi^+\pi^-\pi^0), K+K−π+π−π0π0K^+K^-\pi^+\pi^-\pi^0\pi^0 and 3(π+π−)π0π03(\pi^+\pi^-)\pi^0\pi^0 at the three energy points. Based on these cross sections we set the upper limits on the observed cross sections and the branching fractions for ψ(3770)\psi(3770) decay into these final states at 90% C.L..Comment: 7 pages, 2 figure
    • 

    corecore