
Chapter 6
Carleson measures and Toeplitz operators

Marco Abate

In this last chapter we shall describe a completely different application of the
Kobayashi distance to complex analysis. To describe the problem we need a few
definitions.

Definition 6.0.1. We shall denote by n the Lebesgue measure in C
n. If D ⇢⇢ C

n

is a bounded domain and 1  p  •, we shall denote by Lp(D) the usual space of
measurable p-integrable complex-valued functions on D, with the norm

k fkp =

Z

D
| f (z)|p dn(z)

�1/p

if 1  p < •, while k fk• will be the essential supremum of | f | in D. Given b 2 R,
we shall also consider the weighted Lp-spaces Lp(D,b ), which are the Lp spaces
with respect to the measure d b n , where d : D ! R

+ is the Euclidean distance from
the boundary: d (z) = d(z,∂D). The norm in Lp(D,b ) is given by

k fkp,b =

Z

D
| f (z)|pd (z)b dn(z)

�1/p

for 1  p < •, and by k fkb ,• = k f d bk• for p = •.

Definition 6.0.2. Let D ⇢⇢ C
n be a bounded domain in C

n, and 1  p  •. The
Bergman space Ap(D) is the Banach space Ap(D) = Lp(D)\Hol(D,C) endowed
with the norm k · kp. More generally, given b 2 R the weighted Bergman space
Ap(D,b ) is the Banach space Ap(D,b ) = Lp(D,b )\Hol(D,C) endowed with the
norm k ·kp,b .

The Bergman space A2(D) is a Hilbert space; this allows us to introduce one of
the most studied objects in complex analysis.
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Definition 6.0.3. Let D⇢⇢C
n be a bounded domain in C

n. The Bergman projection
is the orthogonal projection P : L2(D)! A2(D).

It is a classical fact (see, e.g., [107, Section 1.4] for proofs) that the Bergman
projection is an integral operator: it exists a function K : D⇥D ! C such that

P f (z) =
Z

D
K(z,w) f (w)dn(w) (6.1)

for all f 2 L2(D). It turns out that K is holomorphic in the first argument, K(w,z) =
K(z,w) for all z, w 2 D, and it is a reproducing kernel for A2(D) in the sense that

f (z) =
Z

D
K(z,w) f (w)dn(w)

for all f 2 A2(D).

Definition 6.0.4. Let D ⇢⇢ C
n be a bounded domain in C

n. The function K : D⇥
D ! C satisfying (6.1) is the Bergman kernel of D.

Remark 6.0.5. It is not difficult to show (see again, e.g., [107, Section 1.4]) that
K(·,w) 2 A2(D) for all w 2 D, and that

kK(·,w)k2
2 = K(w,w)> 0 .

In case D = B the unit ball, the explicit formula is given in Section 3.3.

A classical result in complex analysis says that in strongly pseudoconvex do-
mains the Bergman projection can be extended to all Lp spaces:

Theorem 6.0.6 (Phong-Stein, [129]). Let D⇢⇢C
n be a strongly pseudoconvex do-

main with C• boundary, and 1  p  •. Then the formula (6.1) defines a continu-
ous operator P from Lp(D) to Ap(D). Furthermore, for any r > p there is f 2 Lp(D)
such that P f /2 Ar(D).

Recently, Čučković and McNeal posed the following question: does there exist
a natural operator, somewhat akin to the Bergman projection, mapping Lp(D) into
Ar(D) for some r > p? To answer this question, they considered Toeplitz operators.

Definition 6.0.7. Let D ⇢⇢C
n be a strongly pseudoconvex domain with C• bound-

ary. Given a measurable function y : D ! C, the multiplication operator of sym-
bol y is simply defined by My( f ) = y f . Given 1  p  •, a symbol y is p-
admissible if My sends Lp(D) into itself; for instance, a y 2 L•(D) is p-admissible
for all p. If y is p-admissible, the Toeplitz operator Ty : Lp(D) ! Ap(D) of sym-
bol y is defined by Ty = P�My , that is

Ty( f )(z) = P(y f )(z) =
Z

D
K(z,w) f (w)y(w)dn(w) .



Remark 6.0.8. More generally, if A is a Banach algebra, B⇢A is a Banach subspace,
P : A ! B is a projection and y 2 A, the Toeplitz operator Ty of symbol y is de-
fined by Ty( f ) = P(y f ). Toeplitz operators are a much studied topic in functional
analysis; see, e.g., [143].

Then Čučković and McNeal were able to prove the following result:

Theorem 6.0.9 (Čučković-McNeal, [50]). Let D ⇢⇢ C
n be a strongly pseudocon-

vex domain with C• boundary. If 1 < p < • and 0  b < n+1 are such that

n+1
n+1�b

<
p

p�1
(6.2)

then the Toeplitz operator Td b maps continuously Lp(D) in Ap+G(D), where

G =
p2

n+1
b � p

.

Čučković and McNeal also asked whether the gain G in integrability is optimal;
they were able to positively answer to this question only for n = 1. The positive
answer in higher dimension has been given by Abate, Raissy and Saracco [11], as
a corollary of their study of a larger class of Toeplitz operators on strongly pseudo-
convex domains. This study, putting into play another important notion in complex
analysis, the one of Carleson measure, used as essential tool the Kobayashi distance;
in the next couple of sections we shall describe the gist of their results.

6.1 Definitions and results

In this subsection and the next D will always be a bounded strongly pseudoconvex
domain with C• boundary. We believe that the results might be generalized to other
classes of domains with C• boundary (e.g., finite type domains), and possibly to
domains with less smooth boundary, but we will not pursue this subject here.

Let us introduce the main player in this subject.

Definition 6.1.1. Let D ⇢⇢C
n be a strongly pseudoconvex domain with C• bound-

ary, and µ a finite positive Borel measure on D. Then the Toeplitz operator Tµ of
symbol µ is defined by

Tµ( f )(z) =
Z

D
K(z,w) f (w)dµ(w) ,

where K is the Bergman kernel of D.

For instance, if y is an admissible symbol then the Toeplitz operator Ty defined
above is the Toeplitz operator Tyn according to Definition 6.1.1.



In Definition 6.1.1 we did not specify domain and/or range of the Topelitz opera-
tor µ because the main point of the theory we are going to discuss is exactly to link
properties of the measure µ with domain and range of Tµ .

Toeplitz operators associated to measures have been extensively studied on the
unit disc D and on the unit ball Bn (see, e.g., [115], [116], [91], [153] and refer-
ences therein); but [11] has been one of the first papers studying them in strongly
pseudoconvex domains.

The kind of measure we shall be interested in is described in the following

Definition 6.1.2. Let D ⇢⇢C
n be a strongly pseudoconvex domain with C• bound-

ary, A a Banach space of complex-valued functions on D, and 1  p  •. We shall
say that a finite positive Borel measure µ on D is a p-Carleson measure for A if A
embeds continuously into Lp(µ), that is if there exists C > 0 such that

Z

D
| f (z)|dµ(z)Ck fkp

A

for all f 2 A, where k ·kA is the norm in A.

Remark 6.1.3. When the inclusion A ,! Lp(µ) is compact, µ is called vanishing
Carleson measure. Here we shall discuss vanishing Carleson measures only in the
remarks.

Carleson measures for the Hardy spaces H p(D) were introduced by Carleson [46]
to solve the famous corona problem. We shall be interested in Carleson measures
for the weighted Bergman spaces Ap(D,b ); they have been studied by many authors
when D=D or D=B

n (see, e.g., [117], [53], [153] and references therein), but more
rarely when D is a strongly pseudoconvex domain (see, e.g., [49] and [9]).

The main point here is to give a geometric characterization of which measures
are Carleson. To this aim we introduce the following definition, bringing into play
the Kobayashi distance.

Definition 6.1.4. Let D ⇢⇢C
n be a strongly pseudoconvex domain with C• bound-

ary, and q > 0. We shall say that a finite positive Borel measure µ on D is q -
Carleson if there exists r > 0 and Cr > 0 such that

µ
�
BD(z0,r)

�
Crn

�
BD(z0,r)

�q (6.3)

for all z0 2 D. We shall see that if (6.3) holds for some r > 0 then it holds for all
r > 0.

Remark 6.1.5. There is a parallel vanishing notion: we say that µ is vanishing q -
Carleson if there exists r > 0 such that

lim
z0!∂D

µ
�
BD(z0,r)

�

n
�
BD(z0,r)

�q = 0 .

For later use, we recall two more definitions.



Definition 6.1.6. Let D ⇢⇢C
n be a strongly pseudoconvex domain with C• bound-

ary. Given w 2 D, the normalized Bergman kernel in w is given by

kw(z) =
K(z,w)p
K(w,w)

.

Remark 6.0.5 shows that kw 2 A2(D) and kkwk2 = 1 for all w 2 D.

Definition 6.1.7. Let D ⇢⇢C
n be a strongly pseudoconvex domain with C• bound-

ary, and µ a finite positive Borel measure on D. The Berezin transform of µ is the
function Bµ : D ! R

+ defined by

Bµ(z) =
Z

D
|kz(w)|2 dµ(w) .

Again, part of the theory will describe when the Berezin transform of a measure
is actually defined.

We can now state the main results obtained in [11]:

Theorem 6.1.8 (Abate-Raissy-Saracco, [11]). Let D ⇢⇢ C
n be a strongly pseu-

doconvex domain with C• boundary, 1 < p < r < • and µ a finite positive Borel
measure on D. Then Tµ maps Ap(D) into Ar(D) if and only if µ is a p-Carleson
measure for Ap�D,(n+1)( 1

p �
1
r )
�
.

Theorem 6.1.9 (Abate-Raissy-Saracco, [11]). Let D ⇢⇢C
n be a strongly pseudo-

convex domain with C• boundary, 1 < p < • and q 2
�
1� 1

n+1 ,2
�
. Then a finite

positive Borel measure µ on D is a p-Carleson measure for Ap�D,(n+1)(q �1)
�

if and only if µ is a q -Carleson measure.

Theorem 6.1.10 (Abate-Raissy-Saracco, [11]). Let D ⇢⇢ C
n be a strongly pseu-

doconvex domain with C• boundary, and q > 0. Then a finite positive Borel
measure µ on D is q -Carleson if and only the Berezin transform Bµ exists and
d (n+1)(1�q)Bµ 2 L•(D).

Remark 6.1.11. This is just a small selection of the results contained in [11]. There
one can find statements also for p = 1 or p = •, for other values of q , and on
the mapping properties of Toeplitz operators on weighted Bergman spaces. Further-
more, there it is also shown that Tµ is a compact operator from Ap(D) into Ar(D)
if and only if µ is a vanishing p-Carleson measure for Ap�D,(n+1)( 1

p �
1
r )
�
; that

µ is a vanishing p-Carleson measure for Ap�D,(n+1)(q �1)
�

if and only if µ is a
vanishing q -Carleson measure; and that µ is a vanishing q -Carleson measure if and
only if d (n+1)(1�q)(z)Bµ(z)! 0 as z ! ∂D.

Remark 6.1.12. The condition “p-Carleson” is independent of any radius r > 0,
while the condition “q -Carleson” does not depend on p. Theorem 6.1.9 thus im-
plies that if µ satisfies (6.3) for some r > 0 then it satisfies the same condition (with
possibly different constants) for all r > 0; and that if µ is p-Carleson for Ap�D,(n+
1)(q �1)

�
for some 1 < p < • then it is p-Carleson for Ap�D,(n+1)(q �1)

�
for

all 1 < p < •.



In the next subsection we shall describe the proofs; we end this subsection show-
ing why these results give a positive answer to the question raised by Čučković and
McNeal.

Assume that Td b maps Lp(D) (and hence Ap(D)) into Ap+G(D). By Theo-
rem 6.1.8 d b µ must be a p-Carleson measure for Ap�D,(n+ 1)( 1

p � 1
p+G )

�
. By

Theorem 6.1.9 this can happen if and only if d b n is a q -Carleson measure, where

q = 1+
1
p
� 1

p+G
; (6.4)

notice that 1  q < 2 because p > 1 and G � 0. So we need to understand when
d b n is q -Carleson. For this we need the following

Lemma 6.1.13. Let D ⇢⇢ C
n be a strongly pseudoconvex domain with C2 bound-

ary, Then there exists C > 0 such that for every z0 2 D and r > 0 one has

8z 2 BD(z0,r) Ce2r d (z0)� d (z)� e�2r

C
d (z0) .

Proof. Let us fix w0 2 D. Then Theorems 1.5.16 and 1.5.19 yield c0, C0 > 0 such
that

c0 � 1
2 logd (z)  kD(w0,z) kD(z0,z)+ kD(z0,w0)

 r+C0 � 1
2 logd (z0) ,

for all z 2 BD(z0,r), and hence

e2(c0�C0)d (z0) e2rd (z) .

The left-hand inequality is obtained in the same way reversing the roles of z0 and z.
ut

Corollary 6.1.14. Let D ⇢⇢C
n be a strongly pseudoconvex domain with C2 bound-

ary, Given b > 0, put nb = d b n . Then nb is q -Carleson if and only if b �
(n+1)(q �1).

Proof. Using Lemma 6.1.13 we find that

e�2r

C
d (z0)

b n
�
BD(z0,r)

�
 nb

�
BD(z0,r)

�
=
Z

BD(z0,r)
d (z)b dn(z)

 Ce2rd (z0)
b n
�
BD(z0,r)

�

for all z0 2 D. Therefore nb is q -Carleson if and only if

d (z0)
b C1n

�
BD(z0,r)

�q�1

for some C1 > 0. Recalling Theorem 1.5.23 we see that this is equivalent to requiring
b � (n+1)(q �1), and we are done. ut



In our case, q is given by (6.4); therefore b � (n+1)(q �1) if and only if

b � (n+1)
✓

1
p
� 1

p+G

◆
.

Rewriting this in term of G we get

G  p2

n+1
b � p

,

proving that the exponent in Theorem 6.0.9 is the best possible, as claimed. Further-
more, G > 0 if and only if

b
n+1

<
1
p
, 1� b

n+1
> 1� 1

p
, n+1

n+1�b
<

p
p�1

,

and we have also recovered condition (6.2) of Theorem 6.0.9.
Corollary 6.1.14 provides examples of q -Carleson measures. A completely dif-

ferent class of examples is provided by Dirac masses distributed along uniformly
discrete sequences.

Definition 6.1.15. Let (X ,d) be a metric space. A sequence G = {x j} ⇢ X is uni-
formly discrete if there exists e > 0 such that d(x j,xk)� e for all j 6= k.

Then it is possible to prove the following result:

Theorem 6.1.16 ([11]). Let D ⇢⇢ C
n be a bounded strongly pseudoconvex domain

with C• boundary, considered as a metric space with the Kobayashi distance, and
choose 1 � 1

n+1 < q < 2. Let G = {z j} j2N be a sequence in D. Then G is a fi-
nite union of uniformly discrete sequences if and only if Â j d (z j)(n+1)q dz j is a q -
Carleson measure, where dz j is the Dirac measure in z j.

6.2 Proofs

In this section we shall prove Theorems 6.1.8, 6.1.9 and 6.1.10. To do so we shall
need a few technical facts on the Bergman kernel and on the Kobayashi distance. To
simplify statements and proofs, let us introduce the following notation.

Definition 6.2.1. Let D ⇢ C
n be a domain. Given two non-negative functions f ,

g : D ! R
+ we shall write f � g or g ⌫ f to say that there is C > 0 such that

f (z)  Cg(z) for all z 2 D. The constant C is independent of z 2 D, but it might
depend on other parameters (r, q , etc.).

The first technical fact we shall need is an integral estimate on the Bergman
kernel:



Theorem 6.2.2 ([115], [120], [11]). Let D ⇢⇢ C
n be a strongly pseudoconvex do-

main with C• boundary. Take p � 1 and b >�1. Then

Z

D
|K(w,z0)|pd (w)b dn(w)�

8
><

>:

d (z0)b�(n+1)(p�1) i f �1 < b < (n+1)(p�1),
| logd (z0)| i f b = (n+1)(p�1),
1 i f b > (n+1)(p�1),

for all z0 2 D.

In particular, we have the following estimates on the weighted norms of the
Bergman kernel and of the normalized Bergman kernel (see, e.g., [11]):

Corollary 6.2.3. Let D ⇢⇢ C
n be a strongly pseudoconvex domain with C• bound-

ary. Take p > 1 and �1 < b < (n+1)(p�1). Then

kK(·,z0)kp,b � d (z0)
b
p �

n+1
p0 and kkz0kp,b � d (z0)

n+1
2 + b

p �
n+1
p0

for all z0 2 D, where p0 > 1 is the conjugate exponent of p.

We shall also need a statement relating the Bergman kernel with Kobayashi balls.

Lemma 6.2.4 ([115], [9]). Let D ⇢⇢ C
n be a strongly pseudoconvex domain with

C• boundary. Given r > 0 there is dr > 0 such that if d (z0)< dr then

8z 2 BD(z0,r) min{|K(z,z0)|, |kz0(z)|
2}⌫ d (z0)

�(n+1) .

Remark 6.2.5. Notice that Lemma 6.2.4 implies the well-known estimate

K(z0,z0)⌫ d (z0)
�(n+1) ,

which is valid for all z0 2 D.

The next three lemmas involve instead the Kobayashi distance only.

Lemma 6.2.6 ([9]). Let D ⇢⇢ Cn be a strongly pseudoconvex bounded domain with
C2 boundary. Then for every 0 < r < R there exist m 2 N and a sequence {zk}⇢ D
of points such that D =

S•
k=0 BD(zk,r) and no point of D belongs to more than m of

the balls BD(zk,R).

Proof. Let {B j} j2N be a sequence of Kobayashi balls of radius r/3 covering D. We
can extract a subsequence {Dk = BD(zk,r/3)}k2N of disjoint balls in the following
way: set D1 = B1. Suppose we have already chosen D1, . . . ,Dl . We define Dl+1 as
the first ball in the sequence {B j} which is disjoint from D1 [ · · ·[Dl . In particular,
by construction every B j must intersect at least one Dk.

We now claim that {BD(zk,r)}k2N is a covering of D. Indeed, let z 2 D. Since
{B j} j2N is a covering of D, there is j0 2 N so that z 2 B j0 . As remarked above, we
get k0 2 N so that B j0 \Dk0 6= /0. Take w 2 B j0 \Dk0 . Then



kD(z,zk0) kD(z,w)+ kD(w,zk0)< r ,

and z 2 BD(zk0 ,r).
To conclude the proof we have to show that there is m = mr 2 N so that each

point z 2 D belongs to at most m of the balls BD(zk,R). Put R1 = R+ r/3. Since
z 2 BD(zk,R) is equivalent to zk 2 BD(z,R), we have that z 2 BD(zk,R) implies
BD(zk,r/3)✓ BD(z,R1). Furthermore, Theorem 1.5.23 and Lemma 6.1.13 yield

n
�
BD(zk,r/3)

�
⌫ d (zk)

n+1 ⌫ d (z)n+1

when zk 2 BD(z,R). Therefore, since the balls BD(zk,r/3) are pairwise disjoint, us-
ing again Theorem 1.5.23 we get

card{k 2 N | z 2 BD(zk,R)}
n
�
BD(z,R1)

�

n
�
BD(zk,r/3)

� � 1 ,

and we are done. ut

Lemma 6.2.7 ([9]). Let D ⇢⇢ Cn be a strongly pseudoconvex bounded domain with
C2 boundary, and r > 0. Then

c(z0)�
1

n
�
BD(z0,r)

�
Z

BD(z0,r)
c dn

for all z0 2 D and all non-negative plurisubharmonic functions c : D ! R+.

Proof. Let us first prove the statement when D is an Euclidean ball B of radius
R > 0. Without loss of generality we can assume that B is centered at the origin.
Fix z0 2 B, let gz0/R 2 Aut(Bn) be given by (2.10), and let Fz0 : Bn ! B be defined
by Fz0 = Rgz0/R; in particular, Fz0 is a biholomorphism with Fz0(O) = z0, and thus
Fz0

�
BBn(O, r̂)

�
= BB(z0, r̂). Furthermore (see [138, Theorem 2.2.6])

|JacRFz0(z)|= R2n
✓

R2 �kz0k2

|R�hz,z0i|2

◆n+1

� Rn�1

4n+1 d(z0,∂B)n+1 ,

where JacRFz0 denotes the (real) Jacobian determinant of Fz0 . It follows that
Z

BB(z0,r)
c dn =

Z

BBn (O,r)
(c �Fz0)|JacR Fz0 |dn

� Rn�1

4n+1 d(z0,∂B)n+1
Z

BBn (O,r)
(c �Fz0)dn .

Using [138, 1.4.3 and 1.4.7.(1)] we obtain
Z

BBn (O,r)
(c �Fz0)dn = 2n

Z

∂Bn
ds(x)

1
2p

Z tanhr

0

Z 2p

0
c �Fz0(te

iq x)t2n�1dt dq ,



where s is the area measure on ∂Bn normalized so that s(∂Bn) = 1. Now, z 7!
c �Fz0(z x) is subharmonic on (tanhr)D = {|z | < tanhr} ⇢ C for any x 2 ∂Bn,
since Fz0 is holomorphic and c is plurisubharmonic. Therefore [81, Theorem 1.6.3]
yields

1
2p

Z tanhr

0

Z 2p

0
c �Fz0(te

iq x)t2n�1dt dq � c(z0)
Z tanhr

0
t2n�1 dt =

1
2n

(tanhr)2nc(z0) .

So Z

BBn (O,r)
(c �Fz0)dn � (tanhr)2nc(z0) ,

and the assertion follows from Theorem 1.5.23.
Now let D be a generic strongly pseudoconvex domain. Since D has C2 boundary,

there exists a radius e > 0 such that for every x 2 ∂D the euclidean ball Bx(e) of
radius e internally tangent to ∂D at x is contained in D.

Let z0 2 D. If d (z0)< e , let x 2 ∂D be such that d (z0) = kz0 � xk; in particular,
z0 belongs to the ball Bx(e) ⇢ D. If d (z0) � e , let B ⇢ D be the Euclidean ball of
center z0 and radius d (z0). In both cases we have d (z0) = d(z0,∂B); moreover, the
decreasing property of the Kobayashi distance yields BD(z0,r) ◆ BB(z0,r) for all
r > 0.

Let c be a non-negative plurisubharmonic function. Then Theorem 1.5.23 and
the assertion for a ball imply

Z

BD(z0,r)
c dn �

Z

BB(z0,r)
c dn ⌫ n

�
BB(z0,r)

�
c(z0)

⌫ d(z0,∂B)n+1c(z0) = d (z0)
n+1c(z0)

⌫ n
�
BD(z0,r)

�
c(z0) ,

and we are done. ut

Lemma 6.2.8 ([9]). Let D ⇢⇢ Cn be a strongly pseudoconvex bounded domain with
C2 boundary. Given 0 < r < R we have

8z0 2 D 8z 2 BD(z0,r) c(z)� 1
n
�
BD(z0,r)

�
Z

BD(z0,R)
c dn

for every nonnegative plurisubharmonic function c : D ! R
+.

Proof. Let r1 = R� r; by the triangle inequality, z 2 BD(z0,r) yields BD(z,r1) ✓
BD(z0,R). Lemma 6.2.7 then implies

c(z) � 1
n(BD(z,r1))

Z

BD(z,r1)
c dn

 1
n(BD(z,r1))

Z

BD(z0,R)
c dn =

n(BD(z0,r))
n(BD(z,r1))

· 1
n(BD(z0,r))

Z

BD(z0,R)
c dn

for all z 2 BD(z0,r). Now Theorem 1.5.23 and Lemma 6.1.13 yield



n(BD(z0,r))
n(BD(z,r1))

� 1

for all z 2 BD(z0,r), and so

c(z)� 1
n
�
BD(z0,r)

�
Z

BD(z0,R)
c dn

as claimed. ut

Finally, the linking between the Berezin transform and Toeplitz operators is given
by the following

Lemma 6.2.9. Let µ be a finite positive Borel measure on a bounded domain D ⇢⇢
C

n. Then
Bµ(z) =

Z

D
(Tµ kz)(w)kz(w)dn(w) (6.5)

for all z 2 D.

Proof. Indeed using Fubini’s theorem and the reproducing property of the Bergman
kernel we have

Bµ(z) =
Z

D

|K(x,z)|2

K(z,z)
dµ(x)

=
Z

D

K(x,z)
K(z,z)

K(z,x)dµ(x)

=
Z

D

K(x,z)
K(z,z)

✓Z

D
K(w,x)K(z,w)dn(w)

◆
dµ(x)

=
Z

D

 Z

D

K(x,z)p
K(z,z)

K(w,x)dµ(x)

!
K(w,z)p

K(z,z)
dn(w)

=
Z

D

✓Z

D
K(w,x)kz(x)dµ(x)

◆
kz(w)dn(w)

=
Z

D
(Tµ kz)(w)kz(w)dn(w) ,

as claimed. ut

We can now prove Theorems 6.1.8, 6.1.9 and 6.1.10.

Proof (of Theorem 6.1.9). Assume that µ is a p-Carleson measure for Ap�D,(n+
1)(q � 1)

�
, and fix r > 0; we need to prove that µ

�
BD(z0,r)

�
� n

�
BD(z0,r)

�q for
all z0 2 D.

First of all, it suffices to prove the assertion for z0 close to the boundary, because
both µ and n are finite measures. So we can assume d (z0) < dr, where dr is given
by Lemma 6.2.4. Since, by Corollary 6.2.3, k2

z0
2 Ap�D,(n+1)(q �1)

�
, we have



1
d (z0)(n+1)p µ

�
BD(z0,r)

�
�
Z

BD(z0,r)
|kz0(w)|

2p dµ(w)
Z

D
|kz0(w)|

2p dµ(w)

�
Z

D
|kz0(w)|

2pd (w)(n+1)(q�1) dn(w)

� d (z0)
(n+1)p

Z

D
|K(w,z0)|2pd (w)(n+1)(q�1) dn(w)

� d (z0)
(n+1)(q�p)

by Theorem 6.2.2, that we can apply because 1� 1
n+1 < q < 2. Recalling Theo-

rem 1.5.23 we see that µ is q -Carleson.
Conversely, assume that µ is q -Carleson for some r > 0, and let {zk} be the

sequence given by Lemma 6.2.6. Take f 2 Ap�D,(n+1)(q �1)
�
. First of all

Z

D
| f (z)|p dµ(z) Â

k2N

Z

BD(zk,r)
| f (z)|p dµ(z) .

Choose R > r. Since | f |p is plurisubharmonic, by Lemma 6.2.8 we get
Z

BD(zk,r)
| f (z)|p dµ(z) � 1

n
�
BD(zk,r)

�
Z

BD(zk,r)

Z

BD(zk,R)
| f (w)|p dn(w)

�
dµ(z)

� n
�
BD(zk,r)

�q�1
Z

BD(zk,R)
| f (w)|p dn(w)

because µ is q -Carleson. Recalling Theorem 1.5.23 and Lemma 6.1.13 we get
Z

BD(zk,r)
| f (z)|p dµ(z) � d (zk)

(n+1)(q�1)
Z

BD(zk,R)
| f (w)|p dn(w)

�
Z

BD(zk,R)
| f (w)|pd (w)(n+1)(q�1) dn(w) .

Since, by Lemma 6.2.6, there is m 2 N such that at most m of the balls BD(zk,R)
intersect, we get

Z

D
| f (z)|p dµ(z)�

Z

D
| f (w)|pd (w)(n+1)(q�1) dn(w) ,

and so we have proved that µ is p-Carleson for Ap�D,(n+1)(q �1)
�
. ut

We explicitly remark that the proof of the implication “q -Carleson implies p-
Carleson for Ap�D,(n+ 1)(q � 1)

�
” works for all q > 0, and actually gives the

following

Corollary 6.2.10. Let D ⇢⇢ C
n be a bounded strongly pseudoconvex domain with

C2 boundary, q > 0, and µ a q -Carleson measure on D. Then
Z

D
c(z)dµ(z)�

Z

D
c(w)d (w)(n+1)(q�1) dn(w)



for all nonnegative plurisubharmonic functions c : D!R
+ such that c 2Lp�D,(n+

1)(q �1)
�
.

Now we prove the equivalence between q -Carleson and the condition on the
Berezin transform.

Proof (of Theorem 6.1.10). Let us first assume that µ is q -Carleson. By Theo-
rem 6.1.9 we know that µ is 2-Carleson for A2�D,(n + 1)(q � 1)

�
. Fix z0 2 D.

Then Corollary 6.2.3 yields

Bµ(z0) =
Z

D
|kz0(w)|

2 dµ(w)� kkz0k
2
2,(n+1)(q�1) � d (z0)

(n+1)(q�1) ,

as required.
Conversely, assume that d (n+1)(1�q)Bµ 2L•(D), and fix r > 0. Then Lemma 6.2.4

yields

d (z0)
(n+1)(q�1) ⌫ Bµ(z0) =

Z

D
|kz0(w)|

2 dµ(w)�
Z

BD(z0,r)
|kz0(w)|

2 dµ(w)

⌫ 1
d (z0)n+1 µ

�
BD(z0,r)

�

as soon as d (z0) < dr, where dr > 0 is given by Lemma 6.2.4. Recalling Theo-
rem 1.5.23 we get

µ
�
BD(z0,r)

�
� d (z0)

(n+1)q � n
�
BD(z0,r)

�q
,

and the assertion follows when d (z0)< dr. When d (z0)� dr we have

µ
�
BD(z0,r)

�
 µ(D)� d (n+1)q

r  d (z0)
(n+1)q � n

�
BD(z0,r)

�q

because µ is a finite measure, and we are done. ut

For the last proof we need a final

Lemma 6.2.11. Let D ⇢⇢ C
n be a bounded stongly pseudoconvex domain with C2

boundary, and q , h 2 R. Then a finite positive Borel measure µ is q -Carleson if
and only if d h µ is (q + h

n+1 )-Carleson.

Proof. Assume µ is q -Carleson, set µh = d h µ , and choose r > 0. Then Theo-
rem 1.5.23 and Lemma 6.1.13 yield

µh
�
BD(z0,r)

�
=
Z

BD(z0,r)
d (w)h dµ(w)� d (z0)

h µ
�
BD(z0,r)

�

� d (z0)
h n
�
BD(z0,r)

�q � n
�
BD(z0,r)

�q+ h
n+1 ,

and so µh is
�
q + h

n+1
�
-Carleson. Since µ = (µh)�h , the converse follows too. ut

And at last we have reached the



Proof (of Theorem 6.1.8). Let us assume that Tµ maps Ap(D) continuously into
Ar(D), and let r0 be the conjugate exponent of r. Since, by Corollary 6.2.3, kz0 2
Aq(D) for all q > 1, applying Hölder estimate to (6.5) and using twice Corol-
lary 6.2.3 we get

Bµ(z0) kTµ kz0krkkz0kr0 � kkz0kpkkz0kr0

� d (z0)
(n+1)(1� 1

p0 �
1
r ) = d (z0)

(n+1)( 1
p�

1
r ) ,

where p0 is the conjugate exponent of p. By Theorem 6.1.10 it follows that µ is⇣
1+ 1

p �
1
r

⌘
-Carleson, and Theorem 6.1.9 yields that µ is p-Carleson for Ap�D,(n+

1)( 1
p �

1
r )
�

as claimed.
Conversely, assume that µ is p-Carleson for Ap�D,(n+ 1)( 1

p � 1
r )
�
; we must

prove that Tµ maps continuously Ap(D) into Ar(D). Put q = 1+ 1
p � 1

r . Choose
s 2 (p,r) such that

q
p0

<
1
s0
<

q
p0

+
1

(n+1)r
, (6.6)

where s0 be its conjugate exponent of s; this can be done because p0 � s0 � r0 and

q
p0

<
1
r0

.

Take f 2 Ap(D); since |K(z, ·)|p0/s0 is plurisubharmonic and belongs to Lp�D,(n+
1)(q �1)

�
by Theorem 6.2.2, applying the Hölder inequality, Corollary 6.2.10 and

Theorem 6.2.2 (recalling that q < p0/s0) we get

|Tµ f (z)| 
Z

D
|K(z,w)|| f (w)|dµ(w)


Z

D
|K(z,w)|p/s| f (w)|p dµ(w)

�1/p Z

D
|K(z,w)|p0/s0 dµ(w)

�1/p0

�
Z

D
|K(z,w)|p/s| f (w)|p dµ(w)

�1/p

⇥
Z

D
|K(z,w)|p0/s0d (w)(n+1)(q�1) dn(w)

�1/p0

�
Z

D
|K(z,w)|p/s| f (w)|p dµ(w)

�1/p

d (z)(n+1) 1
p0 (q�

p0
s0 ) .

Applying the classical Minkowski integral inequality (see, e.g., [57, 6.19] for a
proof)

"Z

D

Z

D
|F(z,w)|p dµ(w)

�r/p

dn(z)

#1/r


"Z

D

Z

D
|F(z,w)|r dn(z)

�p/r

dµ(w)

#1/p



we get

kTµ fkp
r �

"Z

D

Z

D
|K(z,w)p/s| f (w)|pd (z)(n+1) p

p0 (q�
p0
s0 ) dµ(w)

�r/p

dn(z)

#p/r


Z

D
| f (w)|p

Z

D
|K(z,w)|r/sd (z)(n+1) r

p0 (q�
p0
s0 ) dn(z)

�p/r

dµ(w) .

To estimate the integral between square brackets we need to know that

�1 < (n+1)
r
p0

✓
q � p0

s0

◆
< (n+1)

⇣ r
s
�1
⌘
.

The left-hand inequality is equivalent to the right-hand inequality in (6.6), and thus
it is satisfied by assumption. The right-hand inequality is equivalent to

q
p0

� 1
s0
<

1
s
� 1

r
() q

p0
< 1� 1

r
.

Recalling the definition of q we see that this is equivalent to

1
p0

✓
1+

1
p
� 1

r

◆
< 1� 1

r
() 1

p0
< 1� 1

r
,

which is true because p < r. So we can apply Theorem 6.2.2 and we get

kTµ fkp
r �

Z

D
| f (w)|pd (w)(n+1)p

h
1
p0 (q�1)+ 1

r �
1
p

i

dµ(w)

=
Z

D
| f (w)|pd (w)�(n+1)(q�1) dµ(w)

� k fkp
p ,

where in the last step we applied Theorem 6.1.9 to d�(n+1)(q�1)µ , which is 1-
Carleson (Lemma 6.2.11) and hence p-Carleson for Ap(D), and we are done. ut
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