112,881 research outputs found
Understanding the nucleation mechanisms of Carbon Nanotubes in catalytic Chemical Vapor Deposition
The nucleation of carbon caps on small nickel clusters is studied using a
tight binding model coupled to grand canonical Monte Carlo simulations. It
takes place in a well defined carbon chemical potential range, when a critical
concentration of surface carbon atoms is reached. The solubility of carbon in
the outermost Ni layers, that depends on the initial, crystalline or
disordered, state of the catalyst and on the thermodynamic conditions, is
therefore a key quantity to control the nucleation
On the gravitational wave background from compact binary coalescences in the band of ground-based interferometers
This paper reports a comprehensive study on the gravitational wave (GW)
background from compact binary coalescences. We consider in our calculations
newly available observation-based neutron star and black hole mass
distributions and complete analytical waveforms that include post-Newtonian
amplitude corrections. Our results show that: (i) post-Newtonian effects cause
a small reduction in the GW background signal; (ii) below 100 Hz the background
depends primarily on the local coalescence rate and the average chirp
mass and is independent of the chirp mass distribution; (iii) the effects of
cosmic star formation rates and delay times between the formation and merger of
binaries are linear below 100 Hz and can be represented by a single parameter
within a factor of ~ 2; (iv) a simple power law model of the energy density
parameter up to 50-100 Hz is sufficient to be used
as a search template for ground-based interferometers. In terms of the
detection prospects of the background signal, we show that: (i) detection (a
signal-to-noise ratio of 3) within one year of observation by the Advanced LIGO
detectors (H1-L1) requires a coalescence rate of for binary neutron stars (binary black holes); (ii) this limit on
could be reduced 3-fold for two co-located detectors, whereas the
currently proposed worldwide network of advanced instruments gives only ~ 30%
improvement in detectability; (iii) the improved sensitivity of the planned
Einstein Telescope allows not only confident detection of the background but
also the high frequency components of the spectrum to be measured. Finally we
show that sub-threshold binary neutron star merger events produce a strong
foreground, which could be an issue for future terrestrial stochastic searches
of primordial GWs.Comment: A few typos corrected to match the published version in MNRA
Recruitment Market Trend Analysis with Sequential Latent Variable Models
Recruitment market analysis provides valuable understanding of
industry-specific economic growth and plays an important role for both
employers and job seekers. With the rapid development of online recruitment
services, massive recruitment data have been accumulated and enable a new
paradigm for recruitment market analysis. However, traditional methods for
recruitment market analysis largely rely on the knowledge of domain experts and
classic statistical models, which are usually too general to model large-scale
dynamic recruitment data, and have difficulties to capture the fine-grained
market trends. To this end, in this paper, we propose a new research paradigm
for recruitment market analysis by leveraging unsupervised learning techniques
for automatically discovering recruitment market trends based on large-scale
recruitment data. Specifically, we develop a novel sequential latent variable
model, named MTLVM, which is designed for capturing the sequential dependencies
of corporate recruitment states and is able to automatically learn the latent
recruitment topics within a Bayesian generative framework. In particular, to
capture the variability of recruitment topics over time, we design hierarchical
dirichlet processes for MTLVM. These processes allow to dynamically generate
the evolving recruitment topics. Finally, we implement a prototype system to
empirically evaluate our approach based on real-world recruitment data in
China. Indeed, by visualizing the results from MTLVM, we can successfully
reveal many interesting findings, such as the popularity of LBS related jobs
reached the peak in the 2nd half of 2014, and decreased in 2015.Comment: 11 pages, 30 figure, SIGKDD 201
WavePacket: A Matlab package for numerical quantum dynamics. III: Quantum-classical simulations and surface hopping trajectories
WavePacket is an open-source program package for numerical simulations in
quantum dynamics. Building on the previous Part I [Comp. Phys. Comm. 213,
223-234 (2017)] and Part II [Comp. Phys. Comm. 228, 229-244 (2018)] which dealt
with quantum dynamics of closed and open systems, respectively, the present
Part III adds fully classical and mixed quantum-classical propagations to
WavePacket. In those simulations classical phase-space densities are sampled by
trajectories which follow (diabatic or adiabatic) potential energy surfaces. In
the vicinity of (genuine or avoided) intersections of those surfaces
trajectories may switch between surfaces. To model these transitions, two
classes of stochastic algorithms have been implemented: (1) J. C. Tully's
fewest switches surface hopping and (2) Landau-Zener based single switch
surface hopping. The latter one offers the advantage of being based on
adiabatic energy gaps only, thus not requiring non-adiabatic coupling
information any more.
The present work describes the MATLAB version of WavePacket 6.0.2 which is
essentially an object-oriented rewrite of previous versions, allowing to
perform fully classical, quantum-classical and quantum-mechanical simulations
on an equal footing, i.e., for the same physical system described by the same
WavePacket input. The software package is hosted and further developed at the
Sourceforge platform, where also extensive Wiki-documentation as well as
numerous worked-out demonstration examples with animated graphics are
available
- …
