WavePacket is an open-source program package for numerical simulations in
quantum dynamics. Building on the previous Part I [Comp. Phys. Comm. 213,
223-234 (2017)] and Part II [Comp. Phys. Comm. 228, 229-244 (2018)] which dealt
with quantum dynamics of closed and open systems, respectively, the present
Part III adds fully classical and mixed quantum-classical propagations to
WavePacket. In those simulations classical phase-space densities are sampled by
trajectories which follow (diabatic or adiabatic) potential energy surfaces. In
the vicinity of (genuine or avoided) intersections of those surfaces
trajectories may switch between surfaces. To model these transitions, two
classes of stochastic algorithms have been implemented: (1) J. C. Tully's
fewest switches surface hopping and (2) Landau-Zener based single switch
surface hopping. The latter one offers the advantage of being based on
adiabatic energy gaps only, thus not requiring non-adiabatic coupling
information any more.
The present work describes the MATLAB version of WavePacket 6.0.2 which is
essentially an object-oriented rewrite of previous versions, allowing to
perform fully classical, quantum-classical and quantum-mechanical simulations
on an equal footing, i.e., for the same physical system described by the same
WavePacket input. The software package is hosted and further developed at the
Sourceforge platform, where also extensive Wiki-documentation as well as
numerous worked-out demonstration examples with animated graphics are
available