101 research outputs found

    Applications of Stretching Technique and Time Window Effects on Ultrasonic Velocity Monitoring in Concrete

    Get PDF
    Coda wave interferometry (CWI) has been used to measure the relative wave-velocity change (dV/V) caused by small changes in materials. This study uses the stretching processing technique which has been used for CWI analysis to investigate velocity changes of direct longitudinal (P) wave, direct shear (S) wave, and coda wave in concrete by choosing different time windows of ultrasonic signals. It is found that the obtained wave-velocity change depends on the time window position, because the relative contribution of P wave and S wave is different in each signal window. This paper presents three experimental scenarios of velocity change in concrete: early-age hydration, temperature change, and uniaxial loading. In early-age concrete, the S wave has a larger relative velocity change than the P wave, which is consistent with the microstructure development due to the hydration process. Temperature change causes a larger dV/V on the P wave than on the S wave, and the difference between P and S wave-velocity changes may be used to determine nonlinear elastic constants of materials. In the uniaxial loading experiment, analysis of the direct P wave can distinguish the acoustoelastic effects in the stress direction and the non-stress direction, which may potentially be used for stress evaluation in prestressed structures. However, the coda wave does not show this directional property to stress due to multiple scattering in the medium

    Applications of Stretching Technique and Time Window Effects on Ultrasonic Velocity Monitoring in Concrete

    Get PDF
    Coda wave interferometry (CWI) has been used to measure the relative wave-velocity change (dV/V) caused by small changes in materials. This study uses the stretching processing technique which has been used for CWI analysis to investigate velocity changes of direct longitudinal (P) wave, direct shear (S) wave, and coda wave in concrete by choosing different time windows of ultrasonic signals. It is found that the obtained wave-velocity change depends on the time window position, because the relative contribution of P wave and S wave is different in each signal window. This paper presents three experimental scenarios of velocity change in concrete: early-age hydration, temperature change, and uniaxial loading. In early-age concrete, the S wave has a larger relative velocity change than the P wave, which is consistent with the microstructure development due to the hydration process. Temperature change causes a larger dV/V on the P wave than on the S wave, and the difference between P and S wave-velocity changes may be used to determine nonlinear elastic constants of materials. In the uniaxial loading experiment, analysis of the direct P wave can distinguish the acoustoelastic effects in the stress direction and the non-stress direction, which may potentially be used for stress evaluation in prestressed structures. However, the coda wave does not show this directional property to stress due to multiple scattering in the medium

    Development of an NDT Tool for in-Situ Assessment of Prestress Loss

    Get PDF
    The research objective is to develop a non-destructive testing (NDT) method to evaluate the prestress loss in prestressed concrete bridge girders using ultrasonic waves. The work principle is based on acoustoelastic effect - ultrasonic wave velocity varies with stress level in prestressed concrete. A self-reference test setup was proposed to measure wave velocity in two orthogonal directions (prestress and unstressed directions) in the girder. This setup will be able to reduce effects of material variation and temperature change. The concept was first validated on small concrete specimens (cylinders and beams) in laboratory. A signal analysis algorithm was developed to reliably measure P wave velocity change with stress, i.e. the acoustoelastic coefficient. Then the proposed technique was applied to a full-scale prestressed concrete bridge girder (131 ft long) to monitor the stress release process. The stress change monitored by the ultrasonic test showed good agreement with the result from the strain measurement. In both the small beam test and the large girder test, the measured acoustoelastic coefficients were in the range of 0.7%/ksi. The temperature effects on acoustoelastic coefficient were investigated on two prestressed concrete members. Experimental results showed a slight difference between temperature induced velocity changes in the prestress and unstressed directions. Although temperature variation can cause large change of velocity, the self-reference setup will be able to correct about 80% of temperature effect. The relationship between relative wave velocity changes and stress changes in two orthogonal directions after temperature correction can be used to predict the stress level in concrete and reduce environmental influences

    Modeling and dynamic analysis of spiral bevel gear coupled system of intermediate and tail gearboxes in a helicopter.

    Get PDF
    The coupled dynamic model of the intermediate and tail gearboxes’ spiral bevel gear-oblique tail shaft-laminated membrane coupling was established by employing the hybrid modeling method of finite element and lumped mass. Among them, the dynamic equation of the shaft was constructed by Timoshenko beam; spiral bevel gears were derived theoretically by the lumped-mass method, where the effects of time-varying meshing stiffness, transmission error, external imbalance excitation and the like were considered simultaneously; laminated membrane coupling was simplified to a lumped parameter model, in which the stiffness was obtained by the finite element simulation and experiment. On this basis, the laminated membrane coupling and effects of several important parameters, including the unbalance value, tail rotor excitation, oblique tail shaft’s length and transmission error amplitude, on the system’s dynamic characteristics were discussed. The results showed that the influences of laminated membrane coupling and transmission error amplitude on the coupled system’s vibration response were prominent, which should be taken into consideration in the dynamic model. Due to the bending-torsional coupled effect, the lateral vibration caused by gear eccentricity would enlarge the oblique tail shaft’s torsional vibration; similarly, the tail rotor’s torsional excitation also varies the lateral vibration of the oblique tail shaft. The coupled effect between the eccentricity of gear pairs mainly hit the torsional vibration. Also, as the oblique tail shaft’s length increased, the torsional vibration of the oblique tail shaft tended to diminish while the axis orbit became larger. The research provides theoretical support for the design of the helicopter tail transmission system

    Loss of ATF3 exacerbates liver damage through the activation of mTOR/p70S6K/ HIF-1α signaling pathway in liver inflammatory injury.

    Get PDF
    Activating transcription factor 3 (ATF3) is a stress-induced transcription factor that plays important roles in regulating immune and metabolic homeostasis. Activation of the mechanistic target of rapamycin (mTOR) and hypoxia-inducible factor (HIF) transcription factors are crucial for the regulation of immune cell function. Here, we investigated the mechanism by which the ATF3/mTOR/HIF-1 axis regulates immune responses in a liver ischemia/reperfusion injury (IRI) model. Deletion of ATF3 exacerbated liver damage, as evidenced by increased levels of serum ALT, intrahepatic macrophage/neutrophil trafficking, hepatocellular apoptosis, and the upregulation of pro-inflammatory mediators. ATF3 deficiency promoted mTOR and p70S6K phosphorylation, activated high mobility group box 1 (HMGB1) and TLR4, inhibited prolyl-hydroxylase 1 (PHD1), and increased HIF-1α activity, leading to Foxp3 downregulation and RORγt and IL-17A upregulation in IRI livers. Blocking mTOR or p70S6K in ATF3 knockout (KO) mice or bone marrow-derived macrophages (BMMs) downregulated HMGB1, TLR4, and HIF-1α and upregulated PHD1, increasing Foxp3 and decreasing IL-17A levels in vitro. Silencing of HIF-1α in ATF3 KO mice ameliorated IRI-induced liver damage in parallel with the downregulation of IL-17A in ATF3-deficient mice. These findings demonstrated that ATF3 deficiency activated mTOR/p70S6K/HIF-1α signaling, which was crucial for the modulation of TLR4-driven inflammatory responses and T cell development. The present study provides potential therapeutic targets for the treatment of liver IRI followed by liver transplantation

    Experimental and numerical investigation of rubber damping ring and its application in multi-span shafting

    Get PDF
    A new approach for establishing the mechanical model of the rubber damping ring was studied numerically and experimentally. Firstly, parameters of Mooney–Rivlin and Prony series models of the rubber material were identified based on ISIGHT integrating with ANSYS and MATLAB, in which the rubber damping ring’s hysteresis loop was obtained by vibration experiment and ANSYS simulation, respectively; meanwhile, the dynamic stiffness and damping were calculated simultaneously by a parameter separation and identification method. Subsequently, the accuracy of the constitutive model parameters was verified experimentally. In the light of this, based on the experimental design and the approximate model method of the joint simulation platform, a mechanical model of dynamic stiffness and damping of the rubber damping ring was established. Finally, the rubber damping ring’s mathematical model was employed to perform a vibration reduction analysis in a multi-span shafting, where the numerical and experimental investigation was conducted, respectively. The results show that the theoretical and experimental error of vibration reduction rate is less than 17%, which verifies the accuracy of the mechanical model of the rubber damping ring
    • …
    corecore