734 research outputs found

    Neural Basis of Working Memory Enhancement after Acute Aerobic Exercise: fMRI Study of Preadolescent Children

    Get PDF
    Working memory lies at the core of cognitive function and plays a crucial role in children’s learning, reasoning, problem solving, and intellectual activity. Behavioral findings have suggested that acute aerobic exercise improves children’s working memory; however, there is still very little knowledge about whether a single session of aerobic exercise can alter working memory’s brain activation patterns, as assessed by functional magnetic resonance imaging (fMRI). Therefore, we investigated the effect of acute moderate-intensity aerobic exercise on working memory and its brain activation patterns in preadolescent children, and further explored the neural basis of acute aerobic exercise on working memory in these children. We used a within-subjects design with a counterbalanced order. Nine healthy, right-handed children were scanned with a Siemens MAGNETOM Trio 3.0 Tesla magnetic resonance imaging scanner while they performed a working memory task (N-back task), following a baseline session and a 30-min, moderate-intensity exercise session. Compared with the baseline session, acute moderate-intensity aerobic exercise benefitted performance in the N-back task, increasing brain activities of bilateral parietal cortices, left hippocampus, and the bilateral cerebellum. These data extend the current knowledge by indicating that acute aerobic exercise enhances children’s working memory, and the neural basis may be related to changes in the working memory’s brain activation patterns elicited by acute aerobic exercise

    Fasciolopsis buski (Digenea: Fasciolidae) from China and India may represent distinct taxa based on mitochondrial and nuclear ribosomal DNA sequences

    Get PDF
    Sequences of primers used to amplify fragments of Fasciolopsis buski mitochondrial genome. (DOCX 17 kb

    Application of Local Fractional Series Expansion Method to Solve Klein-Gordon Equations on Cantor Sets

    Get PDF
    We use the local fractional series expansion method to solve the Klein-Gordon equations on Cantor sets within the local fractional derivatives. The analytical solutions within the nondifferential terms are discussed. The obtained results show the simplicity and efficiency of the present technique with application to the problems of the liner differential equations on Cantor sets

    Bis(5-phenyl-1H-1,2,4-triazol-3-yl) disulfide dihydrate

    Get PDF
    A crystallographic twofold axis passing through the centre of the disulfide linkage in the title compound, C16H12N6S2·2H2O, results in one-half of the mol­ecule and one uncoordinated water mol­ecule described in the asymmetric unit. In the mol­ecule, the mean planes of the benzene and triazole rings are close to being coplanar and are separated by a dihedral angle of 2.08 (15)°. The triazole rings are twisted by a dihedral angle of 37.67 (6)° from the disulfide linkage. The crystal packing is stabilized by inter­molecular N—H⋯O and O—H⋯N hydrogen bonds with the water mol­ecules, forming a three-dimensional supra­molecular network

    (R)-2-(2-Methoxy­phen­yl)-2,5-dihydro­thio­phene-3-carbaldehyde

    Get PDF
    In the title compound, C12H12O2S, the asymmetric unit contains two independent mol­ecules. The chiral C atoms of both mol­ecules were established to be in the R configuration. In both mol­ecules, the 2,5-dihydro­thio­phene rings adopt S-envelope conformations wherein the S atoms are displaced by 0.315 (5) and −0.249 (5) Å from the mean planes of the remaining ring atoms. In the crystal, the molecules are linked by weak C—H⋯O interactions

    Targeted Therapies for Advanced Non-Small Cell Lung Cancer

    Get PDF
    Lung cancer is a serious health problem and the leading cause of cancer death worldwide, due to its high incidence and mortality. 85% of lung cancers are represented by the non-small cell lung cancer (NSCLC). Traditional chemotherapy has been the main treatment option in NSCLC. However, it is often associated with limited efficacy and overall poor patient survival. In recent years, molecular targeting has achieved great progress in therapeutic treatment of cancer and plays a crucial role in the current clinical treatment of NSCLC, due to enhanced efficacy on cancer tissues and reduced toxicity for normal tissues. In this review, we summarize the current targeting treatment of NSCLC, including inhibition of the epidermal growth factor receptor (EGFR), phosphatidylinositol 3-kinase (PI3Ks), mechanistic target of rapamycin (mTOR), epidermal growth factor receptor 2 (ErbB2), vascular epidermal growth factor receptor (VEGFR), kirsten human rat sarcoma protein (KRAS), mesenchymal-epithelial transition factor or hepatocyte growth factor receptor (c-MET), anaplastic lymphoma kinase (ALK), v-Raf murine sarcoma viral oncogene homolog B (BRAF). This article may serve as a guide to clinicians and researchers alike by assisting in making therapeutic decisions. Challenges of acquired drug resistance targeted therapy and imminent newer treatment modalities against NSCLC are also discussed

    Prediction of acute kidney injury in patients with femoral neck fracture utilizing machine learning

    Get PDF
    BackgroundAcute kidney injury (AKI) is a common complication associated with significant morbidity and mortality in high-energy trauma patients. Given the poor efficacy of interventions after AKI development, it is important to predict AKI before its diagnosis. Therefore, this study aimed to develop models using machine learning algorithms to predict the risk of AKI in patients with femoral neck fractures.MethodsWe developed machine-learning models using the Medical Information Mart from Intensive Care (MIMIC)-IV database. AKI was predicted using 10 predictive models in three-time windows, 24, 48, and 72 h. Three optimal models were selected according to the accuracy and area under the receiver operating characteristic curve (AUROC), and the hyperparameters were adjusted using a random search algorithm. The Shapley additive explanation (SHAP) analysis was used to determine the impact and importance of each feature on the prediction. Compact models were developed using important features chosen based on their SHAP values and clinical availability. Finally, we evaluated the models using metrics such as accuracy, precision, AUROC, recall, F1 scores, and kappa values on the test set after hyperparameter tuning.ResultsA total of 1,596 patients in MIMIC-IV were included in the final cohort, and 402 (25%) patients developed AKI after surgery. The light gradient boosting machine (LightGBM) model showed the best overall performance for predicting AKI before 24, 48, and 72 h. AUROCs were 0.929, 0.862, and 0.904. The SHAP value was used to interpret the prediction models. Renal function markers and perioperative blood transfusions are the most critical features for predicting AKI. In compact models, LightGBM still performs the best. AUROCs were 0.930, 0.859, and 0.901.ConclusionsIn our analysis, we discovered that LightGBM had the best metrics among all algorithms used. Our study identified the LightGBM as a solid first-choice algorithm for early AKI prediction in patients after femoral neck fracture surgery

    Analyzing Gene Expression Profile in K562 Cells Exposed to Sodium Valproate Using Microarray Combined with the Connectivity Map Database

    Get PDF
    To explore the mechanism underlying antileukaemia effect of sodium valproate, the growth and survival of the K562 cell line were investigated. Global profiles of gene expression in K562 cells exposed to sodium valproate were assessed and validated. The differentially expressed genes identified were further used to query the connectivity map database to retrieve a ranked list of compounds that act on the same intracellular targets as sodium valproate. A significant increase in cell apoptosis and a change in gene expression profile were observed in valproate-exposed K562 cells. The significant enrichment analysis of gene ontology terms for the differentially expressed genes showed that these genes were involved in many important biological processes. Eight differentially expressed genes involved in apoptosis were verified by quantitative real-time PCR. The connectivity map analysis showed gene expression profile in K562 cells exposed to sodium valproate was most similar to that of HDACi and PI3K inhibitors, suggesting that sodium valproate might exert antileukaemic action by inhibiting HDAC as well as inhibiting PI3K pathway. In conclusion, our data might provide clues to elucidate the molecular and therapeutic potential of VPA in leukaemia treatment, and the connectivity map is a useful tool for exploring the molecular mechanism of drug action

    The multitasking Fasciola gigantica Cathepsin B interferes with various functions of goat peripheral blood mononuclear cells in vitro

    Get PDF
    Cathepsin B, a lysosomal cysteine protease, is thought to be involved in the pathogenesis of Fasciola gigantica infection, but its exact role remains unclear. In the present study, a recombinant F. gigantica cathepsin B (rFgCatB) protein was expressed in the methylotrophic yeast Pichia pastoris. Western blot analysis confirmed the reactivity of the purified rFgCatB protein to serum from F. gigantica-infected goats. The effects of serial concentrations (10, 20, 40, 80, and 160 μg/ml) of rFgCatB on various functions of goat peripheral blood mononuclear cells (PBMCs) were examined. We demonstrated that rFgCatB protein can specifically bind to the surface of PBMCs. In addition, rFgCatB increased the expression of cytokines (IL-2, IL-4, IL-10, IL-17, TGF-β, and IFN-γ), and increased nitric oxide production and cell apoptosis, but reduced cell viability. These data show that rFgCatB can influence cellular and immunological functions of goat PBMCs. Further characterization of the posttranslational modification and assessment of rFgCatB in immunogenicity studies is warranted
    corecore