15 research outputs found

    FAIR-compliant clinical, radiomics and DICOM metadata of RIDER, interobserver, Lung1 and head-Neck1 TCIA collections

    Get PDF
    Purpose: One of the most frequently cited radiomics investigations showed that features automatically extracted from routine clinical images could be used in prognostic modeling. These images have been made publicly accessible via The Cancer Imaging Archive (TCIA). There have been numerous requests for additional explanatory metadata on the following datasets — RIDER, Interobserver, Lung1, and Head–Neck1. To support repeatability, reproducibility, generalizability, and transparency in radiomics research, we publish the subjects’ clinical data, extracted radiomics features, and digital imaging and communications in medicine (DICOM) headers of these four datasets with descriptive metadata, in order to be more compliant with findable, accessible, interoperable, and reusable (FAIR) data management principles. Acquisition and validation methods: Overall survival time intervals were updated using a national citizens registry after internal ethics board approval. Spatial offsets of the primary gross tumor volume (GTV) regions of interest (ROIs) associated with the Lung1 CT series were improved on the TCIA. GTV radiomics features were extracted using the open-source Ontology-Guided Radiomics Analysis Workflow (O-RAW). We reshaped the output of O-RAW to map features and extraction settings to the latest version of Radiomics Ontology, so as to be consistent with the Image Biomarker Standardization Initiative (IBSI). Digital imaging and communications in medicine metadata was extracted using a research version of Semantic DICOM (SOHARD, GmbH, Fuerth; Germany). Subjects’ clinical data were described with metadata using the Radiation Oncology Ontology. All of the above were published in Resource Descriptor Format (RDF), that is, triples. Example SPARQL queries are shared with the reader to use on the online triples archive, which are intended to illustrate how to exploit this data submission. Data format: The accumulated RDF data are publicly accessible through a SPARQL endpoint where the triples are archived. The endpoint is remotely queried through a graph database web application at http://sparql.cancerdata.org. SPARQL queries are intrinsically federated, such that we can efficiently cross-reference clinical, DICOM, and radiomics data within a single query, while being agnostic to the original data format and coding system. The feder

    Pitfalls of Image Biomarker Analysis in Radiation Oncology

    No full text

    Plausibility and redundancy analysis to select FDG-PET textural features in non-small cell lung cancer

    Get PDF
    Contains fulltext : 232784.pdf (Publisher’s version ) (Open Access)BACKGROUND: Radiomics refers to the extraction of a large number of image biomarker describing the tumor phenotype displayed in a medical image. Extracted from positron emission tomography (PET) images, radiomics showed diagnostic and prognostic value for several cancer types. However, a large number of radiomic features are nonreproducible or highly correlated with conventional PET metrics. Moreover, radiomic features used in the clinic should yield relevant information about tumor texture. In this study, we propose a framework to identify technical and clinical meaningful features and exemplify our results using a PET non-small cell lung cancer (NSCLC) dataset. MATERIALS AND METHODS: The proposed selection procedure consists of several steps. A priori, we only include features that were found to be reproducible in a multicenter setting. Next, we apply a voxel randomization step to identify features that reflect actual textural information, that is, that yield in 90% of the patient scans a value significantly different from random texture. Finally, the remaining features were correlated with standard PET metrics to further remove redundancy with common PET metrics. The selection procedure was performed for different volume ranges, that is, excluding lesions with smaller volumes in order to assess the effect of tumor size on the results. To exemplify our procedure, the selected features were used to predict 1-yr survival in a dataset of 150 NSCLC patients. A predictive model was built using volume as predictive factor for smaller, and one of the selected features as predictive factor for bigger lesions. The prediction accuracy of the both models were compared with the prediction accuracy of volume. RESULTS: The number of selected features depended on the lesion size included in the analysis. When including the whole dataset, from 19 features reflecting actual texture only two were found to be not strongly correlated with conventional PET metrics. When excluding lesions smaller than 11.49 and 33.10 mL (25 and 50 percentile of the dataset), four out of 27 features and 13 out of 29 features remained after eliminating features highly correlated with standard PET metrics. When excluding lesions smaller than 103.9 mL (75 percentile), 33 out of 53 features remained. For larger lesions, some of these features outperformed volume in terms of classification accuracy (increase of 4-10%). The combination of using volume as predictor for smaller and one of the selected features for larger lesions also improved the accuracy when compared with volume only (increase from 72% to 76%). CONCLUSION: When performing radiomic analysis for smaller lesions, it should be first carefully investigated if a textural feature reflects actual heterogeneity information. Next, verification of the absence of correlation with all conventional PET metrics is essential in order to assess the additional value of radiomic features. Radiomic analysis with lesions larger than 11.4 mL might give additional information to conventional metrics while at the same time reflecting actual tumor texture. Using a combination of volume and one of the selected features for prediction yields promise to increase accuracy and reliability of a radiomic model

    Mechanism of adhesion in laser spraying of films

    No full text
    Translated from Russian (Fiz. Khim. Obrab. Mater. 1998 (6) 42-47)Available from British Library Document Supply Centre-DSC:9023.190(10135)T / BLDSC - British Library Document Supply CentreSIGLEGBUnited Kingdo

    Generative models improve radiomics reproducibility in low dose CTs: a simulation study

    No full text
    Radiomics is an active area of research in medical image analysis, however poor reproducibility of radiomics has hampered its application in clinical practice. This issue is especially prominent when radiomic features are calculated from noisy images, such as low dose computed tomography (CT) scans. In this article, we investigate the possibility of improving the reproducibility of radiomic features calculated on noisy CTs by using generative models for denoising. Our work concerns two types of generative models-encoder-decoder network (EDN) and conditional generative adversarial network (CGAN). We then compared their performance against a more traditional 'non-local means' denoising algorithm. We added noise to sinograms of full dose CTs to mimic low dose CTs with two levels of noise: low-noise CT and high-noise CT. Models were trained on high-noise CTs and used to denoise low-noise CTs without re-training. We tested the performance of our model in real data, using a dataset of same-day repeated low dose CTs in order to assess the reproducibility of radiomic features in denoised images. EDN and the CGAN achieved similar improvements on the concordance correlation coefficients (CCC) of radiomic features for low-noise images from 0.87 [95%CI, (0.833, 0.901)] to 0.92 [95%CI, (0.909, 0.935)] and for high-noise images from 0.68 [95%CI, (0.617, 0.745)] to 0.92 [95%CI, (0.909, 0.936)], respectively. The EDN and the CGAN improved the test-retest reliability of radiomic features (mean CCC increased from 0.89 [95%CI, (0.881, 0.914)] to 0.94 [95%CI, (0.927, 0.951)]) based on real low dose CTs. These results show that denoising using EDN and CGANs could be used to improve the reproducibility of radiomic features calculated from noisy CTs. Moreover, images at different noise levels can be denoised to improve the reproducibility using the above models without need for re-training, provided the noise intensity is not excessively greater that of the high-noise CTs. To the authors' knowledge, this is the first effort to improve the reproducibility of radiomic features calculated on low dose CT scans by applying generative models

    Machine learning helps identifying volume-confounding effects in radiomics

    No full text
    Contains fulltext : 219868.pdf (Publisher’s version ) (Open Access)PURPOSE: Highlighting the risk of biases in radiomics-based models will help improve their quality and increase usage as decision support systems in the clinic. In this study we use machine learning-based methods to identify the presence of volume-confounding effects in radiomics features. Methods 841 radiomics features were extracted from two retrospective publicly available datasets of lung and head neck cancers using open source software. Unsupervised hierarchical clustering and principal component analysis (PCA) identified relations between radiomics and clinical outcomes (overall survival). Bootstrapping techniques with logistic regression verified features' prognostic power and robustness. Results Over 80% of the features had large pairwise correlations. Nearly 30% of the features presented strong correlations with tumor volume. Using volume-independent features for clustering and PCA did not allow risk stratification of patients. Clinical predictors outperformed radiomics features in bootstrapping and logistic regression. Conclusions The adoption of safeguards in radiomics is imperative to improve the quality of radiomics studies. We proposed machine learning (ML) - based methods for robust radiomics signatures development

    A systematic review and quality of reporting checklist for repeatability and reproducibility of radiomic features

    No full text
    Background and Purpose: Although quantitative image biomarkers (radiomics) show promising value for cancer diagnosis, prognosis, and treatment assessment, these biomarkers still lack reproducibility. In this systematic review, we aimed to assess the progress in radiomics reproducibility and repeatability in the recent years.Methods and materials: Four hundred fifty-one abstracts were retrieved according to our search pattern criteria, with the publication dates ranging from 2017/05/01 to 2020/12/01. Each abstract including the keywords was independently screened by four observers. Forty-two full-text articles were selected for further analysis. Patient population data, radiomic feature classes, feature extraction software, image preprocessing, and reproducibility results were extracted from each article. To support the community with a standardized reporting strategy, we propose a specific reporting checklist to evaluate the feasibility to reproduce each study.Results: Many studies continue to under-report essential reproducibility information: all but one clinical and all but two phantom studies missed to report at least one important item reporting image acquisition. The studies included in this review indicate that all radiomic features are sensitive to image acquisition, reconstruction, tumor segmentation, and interpolation. However, the amount of sensitivity is feature dependent, for instance, textural features were, in general, less robust than statistical features.Conclusions: Radiomics repeatability, reproducibility, and reporting quality can substantially be improved regarding feature extraction software and settings, image preprocessing and acquisition, cutoff values for stable feature selection. Our proposed radiomics reporting checklist can serve to simplify and improve the reporting and, eventually, guarantee the possibility to fully replicate and validate radiomic studies

    Learning from scanners: Bias reduction and feature correction in radiomics

    Get PDF
    Contains fulltext : 208661.pdf (publisher's version ) (Open Access)Purpose: Radiomics are quantitative features extracted from medical images. Many radiomic features depend not only on tumor properties, but also on non-tumor related factors such as scanner signal-to-noise ratio (SNR), reconstruction kernel and other image acquisition settings. This causes undesirable value variations in the features and reduces the performance of prediction models. In this paper, we investigate whether we can use phantom measurements to characterize and correct for the scanner SNR dependence. Methods: We used a phantom with 17 regions of interest (ROI) to investigate the influence of different SNR values. CT scans were acquired with 9 different exposure settings. We developed an additive correction model to reduce scanner SNR influence. Results: Sixty-two of 92 radiomic features showed high variance due to the scanner SNR. Of these 62 features, 47 showed at least a factor 2 significant standard deviation reduction by using the additive correction model. We assessed the clinical relevance of radiomics instability by using a 221 NSCLC patient cohort measured with the same scanner. Conclusions: Phantom measurements show that roughly two third of the radiomic features depend on the exposure setting of the scanner. The dependence can be modeled and corrected significantly reducing the variation in feature values with at least a factor of 2. More complex models will likely increase the correctability. Scanner SNR correction will result in more reliable radiomics predictions in NSCLC
    corecore