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Background: Radiomics refers to the extraction of a large number of image biomarker describing
the tumor phenotype displayed in a medical image. Extracted from positron emission tomography
(PET) images, radiomics showed diagnostic and prognostic value for several cancer types. However,
a large number of radiomic features are nonreproducible or highly correlated with conventional PET
metrics. Moreover, radiomic features used in the clinic should yield relevant information about tumor
texture. In this study, we propose a framework to identify technical and clinical meaningful features
and exemplify our results using a PET non-small cell lung cancer (NSCLC) dataset.
Materials and methods: The proposed selection procedure consists of several steps. A priori, we
only include features that were found to be reproducible in a multicenter setting. Next, we apply a
voxel randomization step to identify features that reflect actual textural information, that is, that yield
in 90% of the patient scans a value significantly different from random texture. Finally, the remaining
features were correlated with standard PET metrics to further remove redundancy with common PET
metrics. The selection procedure was performed for different volume ranges, that is, excluding lesions
with smaller volumes in order to assess the effect of tumor size on the results. To exemplify our pro-
cedure, the selected features were used to predict 1-yr survival in a dataset of 150 NSCLC patients. A
predictive model was built using volume as predictive factor for smaller, and one of the selected fea-
tures as predictive factor for bigger lesions. The prediction accuracy of the both models were com-
pared with the prediction accuracy of volume.
Results: The number of selected features depended on the lesion size included in the analysis. When
including the whole dataset, from 19 features reflecting actual texture only two were found to be not
strongly correlated with conventional PET metrics. When excluding lesions smaller than 11.49 and
33.10 mL (25 and 50 percentile of the dataset), four out of 27 features and 13 out of 29 features
remained after eliminating features highly correlated with standard PET metrics. When excluding
lesions smaller than 103.9 mL (75 percentile), 33 out of 53 features remained. For larger lesions,
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some of these features outperformed volume in terms of classification accuracy (increase of 4–10%).
The combination of using volume as predictor for smaller and one of the selected features for larger
lesions also improved the accuracy when compared with volume only (increase from 72% to 76%).
Conclusion: When performing radiomic analysis for smaller lesions, it should be first carefully
investigated if a textural feature reflects actual heterogeneity information. Next, verification of the
absence of correlation with all conventional PET metrics is essential in order to assess the additional
value of radiomic features. Radiomic analysis with lesions larger than 11.4 mL might give additional
information to conventional metrics while at the same time reflecting actual tumor texture. Using a
combination of volume and one of the selected features for prediction yields promise to increase
accuracy and reliability of a radiomic model. © 2021 The Authors. Medical Physics published by
Wiley Periodicals LLC on behalf of American Association of Physicists in Medicine. [https://doi.org/
10.1002/mp.14684]
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1. INTRODUCTION

Quantitative interpretation of positron emission tomography
(PET) may be used for diagnosis, prognosis, and treatment
response assessment for cancer patients.1,2 To date, the maxi-
mum intensity value in the tumor (SUVMAX), the metabolic
active tumor volume (MATV), or the total lesion glycolysis
(TLG) are often used for this purpose.3,4 Recently, other met-
rics describing the textural properties of the tumor (i.e., tumor
heterogeneity) have gained increasing interest.5,6 These so
called radiomic features might yield additional value to con-
ventional metrics and might help to determine prognosis and
treatment efficacy more accurately and reliably than conven-
tional metrics. Several studies commented on the promising
value of radiomic features for different tumor types.6–8

While a large number of studies reported on the additional
value of radiomics, more and more studies address its chal-
lenges and pitfalls.9,10 The sensitivity of radiomic features to
all steps in the radiomics workflow (i.e., image acquisition
and reconstruction, tumor delineation, image discretization,
and image processing) has been discussed in several
reports.8,11,12 In a clinical workflow, only features that result
in comparable values when extracted from a patient scanned
several times under the same conditions (repeatable features)
and that are yielding only small differences when extracted
from scans of the same patient acquired under different con-
ditions (e.g., different scanners) (reproducible features)
should be used in a radiomics workflow.13 Both characteris-
tics are essential in order to guarantee a reliable treatment
assessment and an accurate diagnosis independent of, for
example, on which PET scanner the patient was examined.
Moreover, many radiomic features are highly correlated with
conventional metrics such as MATV what makes their addi-
tional value questionable.14 Additionally, a radiomic feature
used in the clinic should be relevant and explainable, that is,
should reflect the tumor heterogeneity observed in the medi-
cal image accurately.15

It is of utmost importance that all these requirements are
fulfilled as it might happen that a feature is found by chance
to be predictive for the required task without yielding any
meaningful information about tumor heterogeneity.

Regarding the large number of radiomic features and the rela-
tively small number of patients included in the majority of
studies, this can happen as illustrated in Ref. [16] where the
authors used randomly generated feature values for the pre-
diction of overall survival and achieved a maximum cross-
validation accuracy under the curve (AUC) of 0.79. There-
fore, each radiomic feature should be carefully checked if it
really reflects the tumor heterogeneity observed in the image.

In this study, we propose a procedure to identify and select
only those features that may yield technical and clinical
meaningful information before using them in a prognostic
model in an example dataset. We only include radiomic fea-
tures which were found to be repeatable and reproducible in a
previous multicenter study. Out of these robust features, we
further select features using a method by Welch et al. who
randomly shuffled tumor intensity values of CT images in
order to destroy the underlying tumor texture. By comparing
the features extracted from the original image with the fea-
tures extracted from randomly redistributed voxel value distri-
butions, we can identify features describing tumor
heterogeneity beyond randomness. Hereby, we consider a fea-
ture as describing actual texture information when the feature
value extracted from the original image is significantly differ-
ent from the feature value of the randomly redistributed voxel
intensities. If this is not the case, the feature does not seem to
describe actual texture information. Moreover, we eliminate
those features which are strongly correlated with conven-
tional PET metrics. Previous studies demonstrated that the
correlation with conventional PET metrics depends on the
lesion size.17 To cover this aspect, we apply the proposed fea-
ture selection procedure on different tumor volume ranges.
The proposed feature selection procedure does not only avoid
false-positive findings and overfitting, but can also be used
for feature space reduction allowing to study radiomics per-
formance in more realistically large sample size (typically for
PET up to a few hundred at most). We perform a detailed
investigation which radiomic features are meeting all
described requirements. As an example of the proposed
selection procedure, the selected features are used for classi-
fying 1-yr survival using a logistic regression model. Hereby,
we do not aim to build an optimal prognostic model by
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including, that is, additional clinical parameters. The aim of
this study was to illustrate if we can identify features that
describe actual tumor texture and to investigate if these fea-
tures would then also have additional clinical value in the
example dataset.

2. MATERIALS AND METHODS

2.A. Dataset

The study was registered at clinical trials.gov
(NCT02024113). All patients gave informed consent for study
participation and use of their data for scientific research. The
dataset consists of 150 patients with Stage I–IV NSCLC.
Details about the patient cohort can be found in Table I. Addi-
tional clinical parameters such as the smoking status are
displayed in Table S1. All patients fasted at least 6 hours
before image acquisition. Time between PET scan and tracer
injection was around 60 min. All images were corrected for
attenuation, scatter, random coincidences, and normalization.
Images were acquired on a Gemini TF Big Bore (Philips
Healthcare, Cleveland, OH, USA) and reconstructed using the
BLOB-OS-TOF reconstruction method provided by the ven-
dor. The reconstructed images yielded a cubic voxel size of
4 mm and are compliant with the benchmarks of the European
Association of Nuclear Medicine Research Ltd. (EARL).

2.B. Tumor segmentation

Image analysis was performed using an in-house developed
tool designed for the analysis of PET images18 used in previ-
ous works.19,20 For the segmentation of the tumor volume of
interest (VOI), a semi-automatic segmentation was performed
including all voxels yielding a SUV above 2.5. High-uptake
regions such as the heart or inflammations in the lung were
eliminated by the observer. For lesions close to the heart or
other high-uptake regions, a bounding box was manually
drawn around the tumor to avoid inclusion of physiologically
high-uptake normal tissues. Every segmentation was manually
checked and corrected if necessary. If some voxels of a close
high-uptake region were still included in the VOI, these voxels

were excluded manually from the VOI. Only the primary
tumor was included in the current analysis, which was defined
as the lung lesion with the largest volume.

2.C. Radiomic feature calculation

Radiomic features were calculated using the open-source
software RaCaT which complies with the benchmarks pro-
vided by the Image Biomarker Standardization Initiative
(IBSI).21,22 Prior to feature calculation, images and corre-
sponding VOIs were resampled to a cubic voxel size of 2 mm
using tri-linear interpolation as recommended by Hatt et al.10

A resampling to a cubic voxel size leads to a larger number of
reproducible radiomic features as some features depend on the
number of voxels included in the VOI.21 After interpolation,
all voxels yielding a value above 0.5 in the resampled segmen-
tation mask were included in the VOI. Before textural feature
calculation, all images were first converted to standardized
uptake values (SUV) and then discretized using a fixed bin
size of 0.25 SUV as recommended by various studies.11,23–25

Moreover, these settings were chosen as it has been demon-
strated that they lead to the largest number of reproducible fea-
tures.26 Exact feature definitions as well as details about the
feature calculations are described elsewhere.21

2.D. Data analysis

All data analysis was performed in Python 3.4 using the
packages numpy, scipy, and scikit-learn.

2.D.1. Feature selection procedure

Only features that were identified to be robust and repro-
ducible in previous work were included in the analysis.26 In
this work, a phantom containing 3D-printed phantom inserts
reflecting realistic tumor heterogeneity was scanned on vari-
ous PET systems. The inserts were segmented on each scan
separately and radiomic features were extracted. The features
that only yielded small differences between the different PET
systems and delineations were identified to be reproducible
and are included in the present study. However, we recommend
to make use of semi-automated segmentation approaches, as
much as possible, to avoid observer variability in tumor delin-
eations which in turn will affect the reproducibility of radiomic
analysis. Morphological and statistical features were not con-
sidered in the feature selection as they remain constant when
performing step 1 (randomly shuffling the intensity values
within the VOI). This lead in total to 92 radiomic features. A
list containing the names of all features included in this study
is provided in the supplemental material (Table S1).

The proposed feature selection procedure consists of three
steps:

Step 1.) Randomized voxel assignment: Use a voxel ran-
domization method to identify features that are reflecting the
tumor heterogeneity observed in the PET image beyond ran-
domness.

TABLE I. Patient characteristics.

Cancer stage IA 28 patients

IB 13 patients

IIA 10 patients

IIB 8 patients

IIIA 29 patients

IIIB 15 patients

IV 47 patients

Age Mean 67 yr

Std 9.3 yr

Sex Men 93

Women 57
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Step 2.) Correlation with conventional metrics: Identify
the features yielding additional value to conventional PET
metrics.

Step 3.) Mutual correlation: From the remaining features,
select only the features yielding complementary information
to each other.

The described selection steps will be detailed in the next
paragraphs.

2.D.2. Step 1: Randomized voxel assignment

In order to use a radiomic feature in the clinic, it is impor-
tant that the feature reflects the actual heterogeneity displayed
in the PET image. This means that a lesion with the same
shape but with a different texture should also have a different
feature value. To check if a feature is fulfilling this assump-
tion, the intensity values in a VOI were randomly reshuffled
similar to a method proposed by Welch et al.14 In this way,
the original texture of a lesion is destroyed. However, instead
of shuffling the intensity values of the whole 3D dataset as
proposed by Welch et al., we only shuffled the intensity val-
ues inside the VOI and preserved in this way the first order
statistics. Radiomic features from these randomly generated
voxel redistributions were calculated. The procedure was
repeated 50 times per image. An example illustrating the orig-
inal and two randomly generated distributions are displayed
in Fig. 1. Features extracted from the randomly generated
voxel distributions will be called random features hereafter.

All features calculated from the original voxel distribution
within the tumor VOI were compared with features values
from the random distributions. Features yielding different
values for the original voxel distributions were regarded as
reflecting the actual texture displayed in the image. For this
purpose, the mean and standard deviation of the 50 random
features were calculated for each tumor separately. A feature
calculated from the original voxel distribution was considered
to describe random texture when its feature value was within
the 95% confidence interval:

meanrand�1:96∗stdrand;meanrandþ1:96∗stdrand½ �:
With meanrand being the mean value and stdrand being the
standard deviation calculated from all 50 random features of
one tumor. Every image and tumor was evaluated separately.

Features considered for further analysis needed to yield a
value outside the proposed confidence interval for 90% of the

patients (note that 90% is used in this paper for illustration
purposes, but other thresholds can be applied as deemed
appropriate. For example a lower threshold would result in a
more liberal selection, thus more features passing this selec-
tion step).

2.D.3. Step 2: Correlation with conventional metrics

A radiomic feature should yield additional value to con-
ventional PET metrics. Therefore, all features were checked
for their correlation with MATV, SUVPEAK, and SUVMEAN

using the Spearman’s rank correlation coefficient. The Spear-
man’s correlation coefficient is a nonparametric metric
describing the relationship between two variables. By
comparing the statistical dependence of the rank of the vari-
ables, it also captures nonlinear relationships. A correlation
above 0.9 was regarded as very strong.27 Features with a very
strong correlation with one conventional metric were
regarded as redundant and were therefore discarded from the
analysis.

2.D.4. Step 3: Mutual correlation between features

Finally, it is also important that the remaining features are
reflecting different tumor characteristics and are therefore not
highly correlated among each other. Therefore, all remaining
features were checked for a very strong correlation among
each other. If two or more features yielded a very strong cor-
relation (correlation coefficient > 0.9), the feature that
yielded the lowest correlation with the conventional metrics
was kept and tested for its clinical value.

2.E. Summary of the feature selection procedure

In summary, from the repeatable and reproducible features
selected a priori the features that were considered for further
analysis were the features that:

1. described the texture observed in the image beyond
randomness: yielded different feature values for the
original tumor voxel distribution than for randomly
redistributed voxel intensities within the tumor VOI

2. have additional value to conventional PET metrics:
yielded a correlation coefficient below 0.9 with tumor
volume, SUVPEAK, and SUVMEAN

FIG. 1. Original tumor (left), two examples (middle and right) of the same tumor after randomly shuffling the intensity values in the VOI.
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3. yielded complementary information among each other:
if features were strongly correlated among each other
(0.9 or more), the feature resulting in the lowest corre-
lation with conventional PET metrics was kept

As it has been reported previously that the tumor volume
has an impact on the correlation of a feature with conven-
tional metrics,17 all steps were performed for five volume
ranges separately and results were compared:

• tumors yielding more than 50 voxels in the original
image (>3.2 mL)

• tumors larger than the 25% percentile of the dataset
(>11.48 mL)

• tumors larger than the median of the dataset
(>33.04 mL)

• tumors larger than 45 mL as indicated by Brooks
et al.28

• tumors larger than the 75% percentile (>103.94 mL).

The results of the feature selection procedure will be
detailed as function of tumor volume range in the remainder
of the paper.

2.F. Comparison with other feature selection
methods

The proposed feature selection procedure was compared
with two automatic feature selection methods: maximum rele-
vance and minimum redundancy (MRMR) and RELIEF. Both
methods aim to select only nonredundant (i.e., noncorrelated)
as well as features relevant for the outcome. The MRMR algo-
rithm is selecting the features showing the highest dependence
with the outcome variable and at the same time the lowest
dependence with other selected features.29 While the Relief
algorithm assigns weights to each feature.30 The given weight
increases when a feature is highly similar between patients in
the same group (i.e., alive after 1 year), while the weight
decreases when a feature is highly similar to the feature of
patients belonging to the inverse group (i.e., dead after
1 year). Features with the highest weights are selected.

Both feature selection methods were performed for each
volume range separately. The 10 most important features
identified by the two approaches were compared with the fea-
tures selected by our procedure before eliminating features
with a high mutual correlation. The MRMR feature selection
was performed in the programming language R using the
package mRMRe,31 while the RELIEF algorithm was imple-
mented in Python 3.6.4.

3. FEATURES FOUND IN PREVIOUS STUDIES

Features found to have clinical value in previous studies
were analyzed if they fit the described criteria. This included
zone percentage (GLSZM) and entropy (GLCM),6,32 as well
as high-intensity large area emphasis (GLSZM).32 Moreover,

coarseness, contrast, and busyness (NGTDM) were ana-
lyzed.33,34

4. CLINICAL VALUE OF SELECTED FEATURES

In order to illustrate the clinical value of features matching
the described criteria, three different models were considered:

4.A. Model 1

Each feature was used separately for the prediction of 1-
year survival using stratified cross-validation and a logistic
regression classifier (a detailed description of the classifica-
tion process is given below). The mean accuracy under the
curve (AUC) of all cross-validation folds was compared with
the mean AUC when using the feature volume.

4.B. Model 2

In order to assess their additional value, features found to
yield a clinical value in Model 1 were, in a second step, used
in combination with MATV in the cross-validation and the
logistic regression model. Also here, the mean AUC of the
combined classification was compared with the mean AUC
of volume alone.

4.C. Model 3

For features yielding a clinical value in Model 1, receiver
operating characteristic curves (ROC) were drawn for the
whole dataset. For lesions with volumes below the different
thresholds, volume was used as prognostic factor, while for
lesions above the thresholds, the selected feature was used.
This was done for each selected feature separately. The AUC
of the combined prognosis (volume + feature) was compared
with the AUC of volume only.

For all models, the clinical value of each feature was deter-
mined using the whole dataset and for each volume range
separately. Even if a feature was only found to match all crite-
ria for larger lesions, classification was performed for all vol-
ume ranges in order to compare the predictive value of the
feature for datasets with smaller and larger volume ranges.
The distribution of positive/negative outcomes for each vol-
ume range is displayed in supplemental Fig. 1.

As the number of patients decreases with the exclusion of
smaller lesions, classification was also performed with a sub-
sampled number of patients (=number of patients with vol-
umes > 133.04 mL) for the different volume ranges. This
procedure was performed to identify if the number of training
samples had an impact on classification accuracy.

5. DESCRIPTION OF CLASSIFICATION PROCESS

As the range of radiomic features differs widely from feature
to feature, all features were z-transformed in order to normalize
feature ranges before the start of the classification process. To
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guarantee that in the training data the number of positives and
negatives outcomes (alive/dead after one year) are equally dis-
tributed, the underrepresented class was upsampled using the
Synthetic Minority Oversampling Technique (SMOTE).35 The
testing was performed on the original data distributionswithout
any over- or undersampling. For comparison, the minority class
was also randomly oversampled. In order to assess the clinical
value of the classifier on independent test datasets, stratified
cross-validation with fivefolds and ten repetitions was per-
formed. Hereby, 80% of the patients were used as training and
20% were used as testing dataset. This procedure was repeated
until each data part served once as testing set.

6. RESULTS

6.A.. Features remaining after feature selection
process

6.A.1. Step 1: Randomized voxel assignment

The number of features describing actual texture (i.e., fea-
tures outside the random range) depended on the volume range
included in the analysis:While 19 featureswere found to be out-
side the random range when including the whole dataset, the
number of features increased to 27 when excluding lesions
smaller than 3.2 mL. Eliminating lesions smaller than 11.48,
33.10, 45, and 103.9 mL led to 29, 45, 45, and 53 features
describing actual textural information. All features outside the
random range and their correlation coefficients with conven-
tional metrics are listed in Tables S2–S7 for the different vol-
ume ranges.

6.A.2. Step 2: Correlation with conventional metrics

The tumor volume had also an effect on the correlation with
conventionalmetrics and therefore on the additionalvalue of the

features: The larger the volume range, the more features were
found to be highly correlated with standard PET metrics. From
the 19 features remaining after Step 1, only two features
remainedwhen eliminating features highly correlatedwith con-
ventional metrics when analyzing the whole dataset. When
excluding lesions smaller than 3.2 mL, four of the 27 features
remained were not highly correlated with MATV, SUVMEAN,
and SUVPEAK. The number of remaining features increased to
13out of 29, 25out of 45, 26out of 45, and33out of 53 features.

The behavior of two features as a function of tumor volume
and SUVMEAN are displayed in Figs. 2(a) and 2(b). As illus-
trated, for smaller lesions the original features are inside the
random range and therefore not describing actual textural infor-
mation. With increasing volume the features are found to be
outside the proposed random range. The correlation with
MATV is very strong for smaller lesions but decreases for
larger lesions. While yielding a low correlation with MATV,
some features result in a very strong correlationwith SUVMEAN

as illustrated in Fig. 2(b).

6.A.3. Step 3: Mutual correlation between features

When identifying those features yielding complementary
information, that is, when eliminating features highly corre-
lated between each other, one feature remained when includ-
ing the whole dataset as well as lesions larger than 3.2 mL. 2,
9, 11, and 15 features remained when excluding volumes less
than 11.48, 33.1, 45, and 103.9 mL, respectively.

The described increase in number of selected features for
each step of the feature selection procedure is illustrated in
Fig. 3. All features remaining after Step 3 as well as their cor-
relation coefficients with the conventional metrics are dis-
played in Table II.

Features selected by automatic feature selection
methods: The features that were identified by the feature

FIG. 2. Illustration of the correlation between features and MATV or SUVMEAN: a): the feature Gray-level nonuniformity GLSZM2D yielding a correlation coef-
ficient with MATV of 0.97 (upper row) and a correlation with SUVMEAN of 0.34 (lower row). b): The feature joint average GLCM 3D avg yielding a correlation
of 0.45 with MATV (upper row) and a correlation of 0.99 with SUVMEAN. [Color figure can be viewed at wileyonlinelibrary.com]
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selection method RELIEF are listed in Table III. When all
tumor volumes were included in the feature selection, all fea-
tures selected by RELIEF were either highly correlated with
conventional PET metrics or were not describing actual tex-
ture.

When excluding smaller lesions, some features were
selected by both RELIEF and our proposed selection proce-
dure. When only including very large lesions (i.e., with a vol-
ume > 103.94) eight of 10 features selected by RELIEF were
overlapping with the features found by our procedure. The
other two features did not reflect actual texture for the major-
ity (more than 95%) of the patients.

Features selected by the MRMR algorithm are listed in
Table IV. Similar to the RELIEF feature selection, when
including the whole dataset only features eliminated by our
procedure were selected (leading to no overlap in selected
features). By excluding smaller lesions, more and more fea-
tures selected by MRMR were also selected by our proce-
dure. A maximum of six overlapping features was found
when only including very large lesions. Some features were
selected by RELIEF as most representative even though they
were identified to not reflect actual texture.

6.B. Features found in previous studies

When analyzing features identified to have clinical value
in previous studies, the feature busyness (NGTDM) was
found to be nonreproducible and was therefore a priori
excluded from the analysis. None of the remaining features
was passing Step 1 of the feature selection procedure when
analyzing the whole dataset. When excluding patients with

FIG. 3. Number of features outside the random range (criteria 1) and not correlated with conventional metrics (criteria 1 + 2), and number of features after elimi-
nating features highly correlated between each other (after mutual correlation) for the different volume ranges (left: all volumes are included, from left to right:
more and more smaller lesions are excluded from the analysis until on the very right only tumors with a MATV > 103.94 mL are left). [Color figure can be
viewed at wileyonlinelibrary.com]

TABLE II. Features selected for different volume ranges.

Feature name
Selected by which volume

range

Gray_level_non_uniformity (GLCM, 2Davg) All volume ranges

Gray_level_non_uniformity (GLCM, 2Dmrg) All volume
ranges >= 3.2 mL

long_runs_emphasis (GLRLM, 2Davg) All volume
ranges >= 11.4 mL

Run_percentage (GLRLM 2DWmrg) All volume
ranges >= 33.4 mL

Run_length_variance (GLRLM 2Dvmrg) All volume
ranges >= 33.4 mL

Gray_level_non_uniformity (GLRLM,
3Davg)

All volume
ranges >= 33.4 mL

Gray_level_non_uniformity (GLDZM
2Davg)

All volume
ranges >=33.4 mL

Zone_percentage (GLDZM 2Davg) All volume
ranges >= 33.4 mL

Gray_level_non_uniformity (GLDZM 3D) All volume
ranges >= 33.4 mL

Zone_distance_non_uniformity (GLDZM
2Davg)

All volume
ranges >= 45 mL

Zone_distance_non_uniformity (GLDZM
2Dmrg)

All volume
ranges >= 45 mL

coarseness (NGLDM 2Dmrg) All volume
ranges >= 103.9 mL

small_distance_emphasis (GLDZM 2Davg) All volume
ranges >= 103.9 mL

Dependence_count_non_uniformity
(NGTDM 2Dmrg)

ALL volume
ranges >= 103.9 mL

Dependence_count_entropy (NGTDM
2Davg)

All volume
ranges >= 103.9 mL
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lesions smaller than 33.4 mL, coarseness (NGTDM) and
zone percentage (GLSZM) were fulfilling the requirements
of Step 1, that is, yielded actual textural information. Coarse-
ness correlated with MATV showing a correlation coefficient
of 0.96 even for bigger lesions. Zone percentage yielded a
lower correlation with the conventional metrics for larger vol-
umes (MATV > 33.4 mL) and was the only feature that
passed all steps. Therefore, this feature was checked for its
possible clinical value in the present dataset.

6.C.. Clinical value of selected features

6.C.1. Model 1

The clinical value of the selected features depended on the
volume range included in the classification process. Some
features were, for example, selected to describe actual texture
for lesions with volumes above 33.4 mL but did not yield any
clinical value for this volume range (mean AUC around
0.55). However, when including also smaller lesions, that is,

when performing the classification process for the whole
dataset, their clinical value was comparable to the value of
MATV. Nevertheless, in these cases, these features were also
highly correlated with MATV (Figure 4).

Features that were found to be highly correlated with
SUVMEAN or SUVPEAK did not yield clinical value (mean
AUC around 0.5) when used in Model 1. SUVMEAN and
SUVPEAK yielded a comparable (low) accuracy when used
for classification and yielded therefore no clinical value in the
example dataset.

For the rest of the features, the prediction accuracy
depended on the feature: The feature contrast (NGTDM
2Dmrg) and zone size entropy (GLSZM 2Davg) were fulfill-
ing all described characteristics but were not yielding a clini-
cal value for 1-year survival in Model 1, that is, resulted in a
mean cross-validation AUC of around 0.5. The low accuracy
was observed for all volume ranges.

The features run length variance (GLRLM 2Dvmrg), run
percentage (GLRLM 2Dmrg), difference entropy (GLCM
2Dmrg), Gray-level nonuniformity (GLRLM 2Davg), long

TABLE III. Features selected by the RELIEF algorithm. Features that were also found by our procedure are displayed in bold, while features not reflecting actual
texture are marked with (NoTex), features highly correlated with volume or SUVMEAN are marked with (CORR).

Volume > 0 mL Volume > 3.2 mL Volume > 11.48 mL Volume > 33.04 mL Volume > 45 mL Volume > 103.94 mL

(CORR) Large zone high
gray-level emphasis
(GLSZM 3D)

(CORR) Large zone high
gray-level emphasis
(GLSZM 3D)

(CORR) Large zone high
gray-level emphasis
(GLSZM 3D)

(CORR) Large zone
high gray-level
emphasis (GLSZM
3D)

(CORR) Large zone
high gray-level
emphasis (GLSZM
3D)

(CORR) Large zone
high gray-level
emphasis (GLSZM
3D)

(NoTex) coarseness
(NGTDM 2Dmrg)

(CORR) Run length
variance (GLRLM
2Dvmrg)

(NoTex) Zone distance
nonuniformity
normalized
(GLDZM2Davg)

(CORR) Zone size
entropy (GLSZM
2Davg)

(CORR) Zone size
entropy2Davg

Zone distance
nonuniformity
normalized (GLDZM
2Davg)

(NoTex) coarseness
(NGTDM 3D)

(NoTex) long runs
emphasis (GLRLM
2Davg)

difference variance
(GLCM 2Dvmrg)

Zone distance
nonuniformity
normalized
GLDZM2Davg

(CORR) Dependence
count entropy
(NGTDM 2Davg)

(CORR) Zone size
entropy (GLSZM
2Davg)

(NoTex) difference
variance (GLCM
2Dvmrg)

(NoTex) Zone distance
nonuniformity
normalized
(GLDZM2Davg)

(NoTex) difference
variance (GLCM
2Dmrg)

(CORR) Dependence
count entropy
(NGTDM 2Davg)

Zone distance
nonuniformity
normalized (GLDZM
2Davg)

Run length variance
(GLRLM 2Dvmrg)

(NoTex) difference
variance (GLCM 2Dmrg)

(NoTex) joint maximum
(GLCM 2Davg)

(NoTex) joint maximum
(GLCM 2Davg)

Run length variance
(GLRLM 2Dvmrg)

(NoTex) joint maximum
(GLCM 2Davg)

Gray-level
nonuniformity
(GLSZM 3D)

(NoTex) joint maximum
(GLCM 2Dmrg)

Gray-level
nonuniformity (GLCM
2Davg)

SUVPEAK (NoTex) joint
maximum (GLCM )
2Davg

(NoTex) joint maximum
(GLCM 2Dmrg)

Gray-level
nonuniformity
(GLDZM 3D)

(NoTex) joint maximum
(GLCM 2Davg)

(NoTex) joint maximum
(GLCM 2Dmrg)

(NoTex) small distance
emphasis (GLDZM
2Davg)

(NoTex) joint
maximum (GLCM
2Dmrg)

Run length
variance2Dvmrg

Gray-level
nonuniformity
(GLCM 3Dmrg)

(CORR) contrast
(NGTDM 2Dmrg)

Gray-level
nonuniformity (GLCM
3Dmrg)

(NoTex) joint maximum
(GLCM 2Dmrg)

(NoTex) Dependence
count nonuniformity
(NGTDM 2Davg)

(NoTex) small distance
emphasis (GLDZM
2Davg)

Gray-level
nonuniformity
(GLCM 2Dmrg)

(CORR) contrast
(NGTDM 2Davg)

Gray-level
nonuniformity (GLCM
2Dmrg)

(NoTex) Dependence
count nonuniformity
2Davg

difference variance
(GLCM 2Dvmrg)

coarseness (NGLDM
2Dmrg)

long runs emphasis
(GLRLM 2Davg)

(CORR) Low dependence
high gray-level emphasis
(NGTDM 2Dmrg)

small distance emphasis
(GLDZM 2Davg)
(CORR)

Zone size entropy
(GLSZM 2Davg)
(CORR)

long runs emphasis
(GLRLM 2Davg)

long runs emphasis
(GLRLM 2Davg)

Run length
nonuniformity
(2DWmrg)
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TABLE IV. Features selected by the MRMR algorithm for the different volume ranges. Features that were also found by our procedure are displayed in bold, while
features not reflecting actual texture are marked with (NoTex), features highly correlated with volume or SUVMEAN are marked with (CORR).

Volume > 0 mL Volume > 3.2 mL Volume > 11.48 mL Volume > 33.04 mL Volume > 45 mL Volume > 103.94 mL

(NoTex) Gray-level
nonuniformity (GLSZM
2Davg)

Gray-level
nonuniformity
(GLSZM2Davg)

(CORR) Short run low
gray-level emphasis
(GLRLM 3Davg)

(CORR) Short run low
gray-level emphasis
(GLRLM 3Davg)

long runs emphasis
(GLRLM 2Davg)

Zone distance
nonuniformity
(GLDZM 2Davg)

(NoTex) long runs
emphasis (GLRLM
2Davg)

(NoTex) long runs
emphasis (GLRM 2Davg)

(NoTex) Zone distance
nonuniformity
(GLDZM 2Davg)

Gray-level
nonuniformity
(GLSZM 3D)

Zone distance
nonuniformity
(GLDZM 2Davg)

Gray-level
nonuniformity
(2DWmrg)

(NoTex) Zone distance
nonuniformity
normalized (GLDZM
2Davg)

(NoTex) Zone distance
nonuniformity
normalized (GLDZM
2Davg)

(NoTex) long runs
emphasis (GLRLM
2Davg)

long runs emphasis
(GLRLM 2Davg)

(NoTex) contrast
(NGTDM 2Dmrg)

Gray-level
nonuniformity
(GLSZM 3D)

(CORR) Gray-level
nonuniformity (3Dmrg)

(CORR) Gray-level
nonuniformity (3Dmr)g

Gray-level
nonuniformity
(GLCM 2Dvmrg)

(NoTex) Run length
nonuniformity
(GLRLM 2Davg)

(NoTex) joint maximum
(GLCM 2Dmrg)

Run percentage
(GLRLM 2Davg)

(NoTex) contrast
(NGTDM 2Dmrg)

(NoTex) contrast
(NGTDM 2Dmrg)

(NoTex) small distance
emphasis (GLDZM
2Davg)

(NoTex) contrast
(NGTDM 2Dmrg)

Gray-level
nonuniformity
(GLSZM 2Davg)

Gray-level
nonuniformity
(GLDZM 2Davg)

(NoTex)Morans I (CORR) Short run low
gray-level emphasis
(GLRLM 3Davg)

(NoTex) contrast
(NGTDM 2Dmrg)

Gray-level
nonuniformity
(GLSZM 2Davg)

(NoTex) Zone size
entropy (GLSZM
2Dmrg)

(CORR) Run length
nonuniformity
(GLRLM 2Davg)

(CORR) Short run low
gray-level emphasis
(GLRLM 3Davg)

(NoTex) Run length
nonuniformity (GLRLM
2Dvmrg)

(NoTex) Small distance
emphasis (GLDZM
2Davg)

(NoTex) joint maximum
(GLCM 2Dmrg)

(NoTex) Large zone
high gray-level
emphasis (GLSZM 3D)

(NoTex) Large zone
high gray-level
emphasis (GLSZM
3D)

(NoTex) Run length
nonuniformity (GLRLM
2Dvmrg)

(NoTex) Large zone high
gray-level emphasis
(GLSZM 3D)

(NoTex) Large zone
high gray-level
emphasis (GLSZM
3D)

(NoTex) Large zone
high gray-level
emphasis (GLSZM 3D)

(CORR) difference
variance (GLCM
2Dvmrg)

(CORR) difference
variance (GLCM
2Dvmrg)

(NoTex) Large zone high
gray-level emphasis
(GLSZM 3D)

(CORR) difference
variance (GLCM
2Dvmrg)

(CORR) difference
variance (GLCM
2Dvmrg)

(CORR) difference
variance (GLCM
2Dvmrg)

(CORR) coarseness
(NGTDM 3D)

(NoTex) joint
maximum (GLCM
2Davg)

(CORR) difference
variance (GLCM
2Dvmrg)

(NoTex) joint maximum
(GLCM 2Davg)

(NoTex) joint
maximum (GLCM
2Davg)

Zone distance
nonuniformity
normalized (GLDZM
2Davg)

Zone distance
nonuniformity
normalized (GLDZM
2Davg)

Zone distance
nonuniformity
(GLDZM 2Dmrg)

FIG. 4. Model 1: Mean cross-validation AUC of: (a) the feature run percentage which shows an increasing AUC with larger volumes included in the analysis; (b)
the feature run length nonuniformity results in a reasonable accuracy when including the whole dataset, while the accuracy is decreasing with decreasing volume
range and decreasing correlation with volume. [Color figure can be viewed at wileyonlinelibrary.com]
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runs emphasis (GLRLM 2Davg), and zone percentage
(GLDZM 2Davg) yielded an accuracy around 0.5 when also
smaller lesions were included in the classification process.
The accuracy increased when only including larger volumes
(>33.4 mL) for which they were also found to match all
described criteria (Fig. 4). For these larger volumes, they out-
performed MATV in terms of accuracy (mean AUC 0.6 vs
0.48).

6.C.2. Model 2

For larger lesions, the features leading to an accuracy
improvement in Model 1 led also to an improvement when

used together with MATV in the logistic regression model
(Fig. 5).

6.C.3. Model 3

For the features outperforming volume for larger lesions,
also the combined ROC curves yielded higher AUCs than
volume. The combined prediction led to an increase in AUC
from 72.5% for volume only to up to 76% for the combined
prognosis (Fig. 6). For the feature Gray-level nonuniformity
(GLRLM 2Davg), an increase in AUC was already observed
when using the feature for lesions with volumes above
11.4 mL for which the feature also reflected actual

FIG. 5. Model 2: Mean cross-validation AUC of: (a) the feature run percentage, (b) the feature run length nonuniformity used together with MATV in the logistic
regression model. [Color figure can be viewed at wileyonlinelibrary.com]

FIG. 6. Model 3: Combined AUCs: for lesions above threshold, the feature run percentage is used for prediction, while for features below the threshold, volume
is used for prediction. [Color figure can be viewed at wileyonlinelibrary.com]
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heterogeneity. All AUCs of Models 1, 2, and 3 are listed in
Table S8.

The oversampling technique had only minimal impact on
the accuracy of the classifier as illustrated in the supplemen-
tal material. The accuracy when using all patients or a sub-
sample of patients was for all volume ranges comparable,
indicating that the difference in accuracy for the different data
subsets (by excluding more and more patients) is not due to
the different size of training sets.

7. DISCUSSION

In this study, we proposed a feature selection procedure to
identify which reproducible radiomic features are at the same
time describing the tumor texture beyond randomness and
yielding additional value to conventional PET metrics. The
impact of lesion size on fulfilling these requirements was
assessed.

Our results suggest that the number of plausible radiomic
features depends on the lesion size. For smaller lesions, the
majority of textural features did not describe actual tumor
texture (did not yield feature values significant different from
randomness). This result indicates that textural features
extracted from small lesions should be handled with care. As
small lesions consist only of a few voxels, randomly shuffled
and original image are similar and result therefore in similar
radiomic features. Hence, it is questionable how accurate a
textural feature extracted from a small lesion can reflect
underlying lesion heterogeneity. For each textural feature
family, a matrix is composed describing, for example, how
often a discretized intensity value is appearing consecutively
in the VOI or how many connected voxels yield the same
intensity value.36 These textural features might result in a cer-
tain value due to the small expansion of the lesion but not
due to tumor heterogeneity. The low number of selected
radiomic features might be related to the low spatial resolu-
tion of PET images which has a high impact on smaller
lesions. The low resolution is a general drawback of PET
images. Using modern scanners yielding a better spatial reso-
lution might lead to more radiomic features reflecting actual
texture. Therefore, if a radiomic model including small
lesions is used, it should be carefully checked if a textural fea-
ture is describing the underlying tumor characteristics beyond
randomness. However, conventional PET metrics such as
MATV and SUVmax could be used for the analysis of smal-
ler lesions, while for larger lesions textural features might be
used, as was shown with our combined Model 3. Addition-
ally, features extracted from smaller tumors showed also a
higher correlation with conventional metrics and might not
yield additional value what is in line with the results of Hatt
et al. and Brooks et al.28,37

As larger lesions yield more complex anatomical proper-
ties, it is natural that for larger lesions more features were
selected. However, also for larger lesions, around one third of
the features failed to describe texture different from random-
ness and contain therefore no relevant information about
tumor heterogeneity. Especially for small datasets, it can

happen that one of these features results by chance in a high
correlation with the outcome and results therefore in a good
AUC. Thus, a careful check if there is a relationship between
a predictive feature and the heterogeneity observed in the
medical image is necessary. Moreover, the use of cross-vali-
dation and an external testing set is essential in order to
assess the value of a feature in independent test scenarios and
lowers the risk of identifying a feature that does not describe
relevant information.13,15,38

Due to image noise, partial volume effect, and other intrin-
sic factors, the heterogeneity displayed in a medical image
does not reflect the real underlying tumor heterogeneity accu-
rately as was shown previously for MR and PET images.39,40

However, several studies demonstrated that a tumor displayed
heterogeneously in a PET image is an indicator for a lower
survival chance and higher treatment resistance.10,41 The fea-
tures identified by the proposed selection procedure are not
describing the real tumor heterogeneity, but the heterogeneity
observed in the PET image and thus are reflecting the PET
tumor phenotype.

The clinical value of the radiomic features selected by our
procedure was in our dataset relatively low. Some features
resulted in a reasonable mean cross-validation accuracy when
analyzing the whole dataset (i.e., including also smaller vol-
umes), but were in this case also highly correlated with con-
ventional PET metrics. In addition, in this case, no feature
yielded additional value to MATV. This fact indicates that the
accuracy of these features when applied to the whole dataset
is due to the high correlation with volume. With a decrease in
correlation with volume (by excluding smaller lesions), the
accuracy also decreases what is in line with previous studies
reporting a low accuracy when eliminating features that were
highly correlated with MATV.14,42

However, when excluding smaller lesions, some features
yielded complementary value to MATV, improving the accu-
racy of around 4–10%. Moreover, using the combination of
tumor volume as prognostic factor for smaller lesions and
one selected features as prognostic factor for larger lesions
led to an increase in AUC up to 76% when compared with
using only volume as prognostic factor for the whole dataset
(AUC 72.7%). This indicates, that the selected features had
additional value only for the larger lesions for which they
were also selected. Therefore, it is worthwhile to explore the
use of different prognostic imaging biomarkers (e.g., MATV
versus a radiomic feature) for different lesion size ranges in
future studies.

Brooks et al. indicated that the correlation with MATV
decreases with lesions yielding a MATV above 45 mL and
radiomic analysis including smaller lesions might be ques-
tionable.28 However, our findings demonstrate that the most
adequate threshold is feature dependent what is in line with
the findings of Hatt et al.17 Additionally, Hatt et al. indicated
that a more appropriate volume threshold might be 10 mL as
this threshold already led to a lower correlation with MATV
for some radiomic features. Our results support this finding.
Some radiomic features yielded relevant information and
were at the same time not highly correlated with conventional
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metrics when excluding lesions with a volume below
11.4 mL.

One source of uncertainty in the quantitative analysis of
PET images results from uncertainties in tumor delineation.
As manual segmentations suffer from a high inter- and
intraobserver variability, a semi- or ideally fully automatic
segmentation method should preferably be used. Yet, seg-
mentation of tumors in PET images still requires supervision
and sometimes manual correction,43 resulting in intra- and
inter-observer variability. It is, however, highly recommended
to keep the level of user interaction as low as possible, as we
recently showed in Ref. [44]. By using a semi-automated seg-
mentation approach and workflow, which required delin-
eation adjustment in a few cases (when the tumor was located
to another high-uptake region), we tried to limit the amount
of user interaction and we found that this reduces the obser-
ver variability as much as possible.

While previous studies concentrated on the correlation of
radiomic features with volume, we also investigated the cor-
relation with SUVMEAN and SUVPEAK and found that a large
number of radiomic features yields a high correlation with
these two parameters as well. Hence, even though some fea-
tures might yield additional value to MATV, they yield no
additional value to other conventional PET metrics. There-
fore, the additional value of a feature to all conventional PET
metrics (MATV, SUVMEAN, SUVPEAK) should be investi-
gated and features resulting in a very strong correlation with
conventional metrics should be discarded from the analysis.

As automatic feature selection methods are data driven,
the two automatic feature selection methods used for compar-
ison in our study could not identify features describing non-
relevant or random texture. As our feature selection method
does not only check the value of a feature but also its plausi-
bility, it adds an important aspect to automatic feature selec-
tion methods. Therefore, it could be used in addition to
automatic methods as it can identify features which are found
“by chance” to yield clinical value and can therefore help to
identify false-positive findings.

The selected features as well as the volume thresholds
used in this study should be validated in a larger, independent
patient cohort and are limited to the NSCLC dataset included
in this study. Moreover, the used thresholds (i.e., including
only features reflecting actual texture for more than 90% of
the patients) were chosen as example. In other datasets, these
thresholds could be adapted as deemed appropriate or opti-
mal and a more liberal threshold, thus resulting in more
selected features, may be feasible when larger datasets are
available.

Moreover, the retrospective nature of our study is a clear
limitation and our findings should be validated in a larger,
prospective cohort. However, the aim of our study was to
demonstrate our proposed radiomic feature selection proce-
dure on a clinical dataset. We showed that, especially for
smaller lesions, a large number of radiomic features might
not reflect actual texture information. Our study demonstrates
the need for a more thoughtful performed radiomic analysis

and feature selection procedure. The combination of using
conventional PET metrics for smaller and textural features for
larger lesions might be a solution that should be explored in
other datasets. Only with good statistical methods (i.e., using
cross-validation), the use of external testing datasets, as well
as a careful check which textural features are repeatable,
reproducible, and contain relevant textural information, a
radiomic study becomes transferable to other datasets and
opens the way for a clinical implementation of radiomics.

8. CONCLUSION

In this study, we proposed a feature selection procedure
which identifies reproducible textural that are (a) describing
relevant texture and (b) are not highly correlated with conven-
tional PET metrics. Our results show that the larger the
lesions the more features are selected. Our results illustrate
that when performing textural analysis for small lesions
(<11.4 mL), it should be carefully investigated if a textural
feature reflects relevant tumor characteristics and yields addi-
tional value to conventional metrics. Using tumor volume as
prognostic value for smaller lesions and the identified textural
features as prognostic value for larger lesions yields promis-
ing value for a more accurate and reliable radiomic analysis.
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38. Zwanenburg A, Löck S. Why validation of prognostic models matters?
Radiother Oncol. 2018;127:370–373.

39. Yang F, Young LA, Johnson PB. Quantitative radiomics: validating
image textural features for oncological PET in lung cancer. Radiother
Oncol. 2018;129:209–217.

40. Collewet G, Strzelecki M, Mariette F. Influence of MRI acquisition pro-
tocols and image intensity normalization methods on texture classifica-
tion. Magn Reson Imaging. 2004;22:81–91.

41. Bailly C, Bodet-Milin C, Bourgeois M, et al. Exploring tumor hetero-
geneity using PET imaging: the big picture. Cancers (Basel).
2019;11:1282.

42. Traverso M, Kazmierski IZ, et al. Machine learning helps identifying
volume-confounding effects in radiomics. Phys Medica. 2020;71:
24–30.

43. Hatt M, Laurent B, Ouahabi A, et al. The first MICCAI challenge on
PET tumor segmentation.Med Image Anal. 2018;44:177–195.

44. Pfaehler E, Burggraaff C, Kramer G, et al. PET segmentation of bulky
tumors: strategies and workflows to improve inter-observer variability.
PLoS One. 2020;15:e0230901.

SUPPORTING INFORMATION

Additional supporting information may be found online in
the Supporting Information section at the end of the article.

Data S1. Supporting Information.

Medical Physics, 48 (3), March 2021

1238 Pfaehler et al.: Radiomic feature selection procedure 1238


	1. INTRODUCTION
	2. MATERIALS AND METHODS
	2.A. Dataset
	2.B. Tumor seg�men�ta�tion
	2.C. Radiomic fea�ture cal�cu�la�tion
	2.D. Data anal�y�sis
	2.D.1. Fea�ture selec�tion pro�ce�dure

	mp14684-tbl-0001
	2.D.2. Step 1: Ran�dom�ized voxel assign�ment
	2.D.3. Step 2: Cor�re�la�tion with con�ven�tional met�rics
	2.D.4. Step 3: Mutual cor�re�la�tion between fea�tures

	2.E. Sum�mary of the fea�ture selec�tion pro�ce�dure
	mp14684-fig-0001
	2.F. Com�par�ison with other fea�ture selec�tion meth�ods

	3. FEATURES FOUND IN PREVIOUS STUDIES
	4. CLINICAL VALUE OF SELECTED FEATURES
	4.A. Model 1
	4.B. Model 2
	4.C. Model 3

	5. DESCRIPTION OF CLASSIFICATION PROCESS
	6. RESULTS
	6.A. Fea�tures remain�ing after fea�ture selec�tion pro�cess
	6.A.1. Step 1: Ran�dom�ized voxel assign�ment
	6.A.2. Step 2: Cor�re�la�tion with con�ven�tional met�rics
	6.A.3. Step 3: Mutual cor�re�la�tion between fea�tures

	mp14684-fig-0002
	6.B. Fea�tures found in pre�vi�ous stud�ies
	mp14684-fig-0003
	mp14684-tbl-0002
	6.C. Clin�i�cal value of selected fea�tures
	6.C.1. Model 1

	mp14684-tbl-0003
	mp14684-tbl-0004
	mp14684-fig-0004
	6.C.2. Model 2
	6.C.3. Model 3

	mp14684-fig-0005
	mp14684-fig-0006

	7. DISCUSSION
	8. CONCLUSION
	 ACKNOWLEDGMENTS
	 FUNDING
	 CONFLICT OF INTEREST
	 ETHICAL APPROVAL
	$^var_corr1
	mp14684-bib-0001
	mp14684-bib-0002
	mp14684-bib-0003
	mp14684-bib-0004
	mp14684-bib-0005
	mp14684-bib-0006
	mp14684-bib-0007
	mp14684-bib-0008
	mp14684-bib-0009
	mp14684-bib-0010
	mp14684-bib-0011
	mp14684-bib-0012
	mp14684-bib-0013
	mp14684-bib-0014
	mp14684-bib-0015
	mp14684-bib-0016
	mp14684-bib-0017
	mp14684-bib-0018
	mp14684-bib-0019
	mp14684-bib-0020
	mp14684-bib-0021
	mp14684-bib-0022
	mp14684-bib-0023
	mp14684-bib-0024
	mp14684-bib-0025
	mp14684-bib-0026
	mp14684-bib-0027
	mp14684-bib-0028
	mp14684-bib-0029
	mp14684-bib-0030
	mp14684-bib-0031
	mp14684-bib-0032
	mp14684-bib-0033
	mp14684-bib-0034
	mp14684-bib-0035
	mp14684-bib-0036
	mp14684-bib-0037
	mp14684-bib-0038
	mp14684-bib-0039
	mp14684-bib-0040
	mp14684-bib-0041
	mp14684-bib-0042
	mp14684-bib-0043
	mp14684-bib-0044

	 1.INTRODUCTIONQuan�ti�ta�tive inter�pre�ta�tion of positron emis�sion tomog�ra�phy (PET) may be used for diag�no�sis, prog�no�sis, and treat�ment response assess�ment for cancer patients. To date, the max�i�mum inten�sity value in the tumor (SUVMAX), ...

