3,349 research outputs found

    Magnonic band structure of domain wall magnonic crystals

    Full text link
    Magnonic crystals are prototype magnetic metamaterials designed for the control of spin wave propagation. Conventional magnonic crystals are composed of single domain elements. If magnetization textures, such as domain walls, vortices and skyrmions, are included in the building blocks of magnonic crystals, additional degrees of freedom over the control of the magnonic band structure can be achieved. We theoretically investigate the influence of domain walls on the spin wave propagation and the corresponding magnonic band structure. It is found that the rotation of magnetization inside a domain wall introduces a geometric vector potential for the spin wave excitation. The corresponding Berry phase has quantized value 4nwπ4 n_w \pi, where nwn_w is the winding number of the domain wall. Due to the topological vector potential, the magnonic band structure of magnonic crystals with domain walls as comprising elements differs significantly from an identical magnonic crystal composed of only magnetic domains. This difference can be utilized to realize dynamic reconfiguration of magnonic band structure by a sole nucleation or annihilation of domain walls in magnonic crystals.Comment: 21 pages, 9 figure

    Asymptotic distributions of the signal-to-interference ratios of LMMSE detection in multiuser communications

    Full text link
    Let sk=1N(v1k,...,vNk)T,{\mathbf{s}}_k=\frac{1}{\sqrt{N}}(v_{1k},...,v_{Nk})^T, k=1,...,Kk=1,...,K, where {vik,i,k\{v_{ik},i,k =1,...}=1,...\} are independent and identically distributed random variables with Ev11=0Ev_{11}=0 and Ev112=1Ev_{11}^2=1. Let Sk=(s1,...,sk1,{\mathbf{S}}_k=({\mathbf{s}}_1,...,{\mathbf{s}}_{k-1}, sk+1,...,sK){\mathbf{s}}_{k+1},...,{\mathbf{s}}_K), Pk=diag(p1,...,{\mathbf{P}}_k=\operatorname {diag}(p_1,..., pk1,pk+1,...,pK)p_{k-1},p_{k+1},...,p_K) and \beta_k=p_k{\mathbf{s}}_k^T({\mathb f{S}}_k{\mathbf{P}}_k{\mathbf{S}}_k^T+\sigma^2{\mathbf{I}})^{-1}{\math bf{s}}_k, where pk0p_k\geq 0 and the βk\beta_k is referred to as the signal-to-interference ratio (SIR) of user kk with linear minimum mean-square error (LMMSE) detection in wireless communications. The joint distribution of the SIRs for a finite number of users and the empirical distribution of all users' SIRs are both investigated in this paper when KK and NN tend to infinity with the limit of their ratio being positive constant. Moreover, the sum of the SIRs of all users, after subtracting a proper value, is shown to have a Gaussian limit.Comment: Published at http://dx.doi.org/10.1214/105051606000000718 in the Annals of Applied Probability (http://www.imstat.org/aap/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Semileptonic decays of BcB_c meson to S-wave charmonium states in the perturbative QCD approach

    Get PDF
    Inspired by the recent measurement of the ratio of BcB_c branching fractions to J/ψπ+J/\psi \pi^+ and J/ψμ+νμJ/\psi \mu^+\nu_{\mu} final states at the LHCb detector, we study the semileptonic decays of BcB_c meson to the S-wave ground and radially excited 2S and 3S charmonium states with the perturbative QCD approach. After evaluating the form factors for the transitions BcP,VB_c\rightarrow P,V, where PP and VV denote pseudoscalar and vector S-wave charmonia, respectively, we calculate the branching ratios for all these semileptonic decays. The theoretical uncertainty of hadronic input parameters are reduced by utilizing the light-cone wave function for BcB_c meson. It is found that the predicted branching ratios range from 10610^{-6} up to 10210^{-2} and could be measured by the future LHCb experiment. Our prediction for the ratio of branching fractions BR(Bc+J/Ψπ+)BR(Bc+J/Ψμ+νμ)\frac{\mathcal {BR}(B_c^+\rightarrow J/\Psi \pi^+)}{\mathcal {BR}(B_c^+\rightarrow J/\Psi \mu^+\nu_{\mu})} is in good agreement with the data. For BcVlνlB_c\rightarrow V l \nu_l decays, the relative contributions of the longitudinal and transverse polarization are discussed in different momentum transfer squared regions. These predictions will be tested on the ongoing and forthcoming experiments.Comment: 12 pages, 3 figures, 5 table

    Dynamically manipulating topological physics and edge modes in a single degenerate optical cavity

    Get PDF
    We propose a scheme to simulate topological physics within a single degenerate cavity, whose modes are mapped to lattice sites. A crucial ingredient of the scheme is to construct a sharp boundary so that the open boundary condition can be implemented for this effective lattice system. In doing so, the topological properties of the system can manifest themselves on the edge states, which can be probed from the spectrum of an output cavity field. We demonstrate this with two examples: a static Su-Schrieffer-Heeger chain and a periodically driven Floquet topological insulator. Our work opens up new avenues to explore exotic photonic topological phases inside a single optical cavity.Comment: 6 pages, 5 figure
    corecore