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Abstract Inspired by the recent measurement of the ratio
of Bc branching fractions to J/ψπ+ and J/ψμ+νμ final
states at the LHCb detector, we study the semileptonic decays
of Bc meson to the S-wave ground and radially excited
2S and 3S charmonium states with the perturbative QCD
approach. After evaluating the form factors for the transitions
Bc → P, V , where P and V denote pseudoscalar and vec-
tor S-wave charmonia, respectively, we calculate the branch-
ing ratios for all these semileptonic decays. The theoretical
uncertainty of hadronic input parameters are reduced by uti-
lizing the light-cone wave function for the Bc meson. It is
found that the predicted branching ratios range from 10−7 up
to 10−2 and could be measured by the future LHCb exper-
iment. Our prediction for the ratio of branching fractions
BR(B+

c →J/�π+)

BR(B+
c →J/�μ+νμ)

is in good agreement with the data. For

Bc → Vlνl decays, the relative contributions of the longi-
tudinal and transverse polarization are discussed in different
momentum transfer squared regions. These predictions will
be tested on the ongoing and forthcoming experiments.

1 Introduction

Recently, the LHCb Collaboration has measured the semilep-
tonic and hadronic decay rates of the Bc meson and obtained
BR(B+

c →J/�π+)

BR(B+
c →J/�μ+νμ)

= 0.0469 ± 0.0028(stat) ± 0.0046(syst)

[1]. It is a motivation to investigate the Bc meson semilep-
tonic decays to charmonium, which are easier to identify in
experiment. Indeed, both the CDF and the D0 Collabora-
tion have measured the lifetime of the Bc meson through its
semileptonic decays [2–4]. More recently, the LHCb Collab-
oration gave a more precise measurement of its lifetime using
semileptonic Bc → J/ψμνμX decays [5], where X denotes
any possible additional particles in the final states. At the
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quark level, the semileptonic decays of the Bc meson driven
by ab → c transitions, where the effects of the strong interac-
tion can be separated from the effects of the weak interaction
into a set of Lorentz-invariant form factors. It may provide
us with the information as regards the Cabibbo–Kobayashi–
Maskawa (CKM) matrix elements Vcb and the weak Bc to
charmonia transition form factors.

There are many theoretical approaches to the calculation
of Bc meson semileptonic decays to charmonium. Some of
them are: the nonrelativistic QCD [6,7], the Bethe–Salpeter
relativistic quark model [8], the relativistic quark model [9–
11], the light-cone QCD sum rules approach [12,13], the
covariant light-front model [14], the nonrelativistic quark
model [15], the QCD potential model [16–18], and the light-
front quark model [19]. The perturbative QCD (pQCD)
[20,21] is one of the recently developed theoretical tools
based on QCD to deal with the nonleptonic and semilep-
tonic B decays. So far the semileptonic Bu,d,s,c decays have
been studied systematically in the pQCD approach [22–25].
One may refer to the review paper [26] and the references
therein.

In our previous work [27,28], we analyzed the two-body
nonleptonic decays of the Bc meson with the final states
involving one S-wave charmonium using the perturbative
QCD based on kT factorization. By using the harmonic-
osillator wave functions for the charmonium states, the
obtained ratios of the branching fractions are consistent
with the data and other studies. Especially some of our
predictions were well tested by the recent experiments at
ATLAS [29] and LHCb [30], which may indicate that the
harmonic-oscillator wave functions for S-wave charmonium
work well.

In this paper, we extend our previous pQCD analysis to
the semileptonic Bc decay such as Bc → (ηc(nS), ψ(nS))lν
(here l stands for the leptons e, μ, and τ ) with the radial
quantum number n = 1, 2, 3, while the higher 4S char-
monia are not included here since their properties are
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still not understood well. The semileptonic decays Bc →
(J/ψ, ηc)lν have been studied in pQCD [31], compared
to which the new ingredients of this paper are the follow-
ing.

(1) Instead of the traditional zero-point wave function
for the Bc meson, the light-cone wave function which
was well developed in Ref. [32] is employed in order to
reduce the uncertainties caused by the hadronic parame-
ters. In addition, the charmonium distribution amplitudes
are also extracted from the correspond Schrödinger states
for the harmonic-oscillator potential. (2) Here, the momen-
tum of the spectator charm quark is proportional to the
corresponding meson momentum. In Ref. [31], the charm
quark in the Bc meson carries a momentum with only
the minus component. That is, its invariant mass van-
ishes, while the charm quark in the final states is pro-
portional to the charmonium meson momentum and its
invariant mass does not vanish. This substantial revision
will render our analysis more consistent. (3) We updated
some input hadronic parameters according to the Particle
Data Group 2014 [33]. (4) Besides including the Bc →
(J/ψ, ηc)lν decays, the Bc → P/V (2S, 3S)lν decays are
also investigated, where it is theoretically easier compared
with that of nonleptonic decays. Our goal is to provide a
ready reference to the existing and forthcoming experiments
to compare their data with the predictions in the pQCD
approach.

The paper is organized as follows. In Sect. 2 we define
kinematics and describe the wave functions of the initial and
final states, while the analytic expressions for the transition
form factors and the differential decay rate of the considered
decay modes are given in Sect. 3. The numerical results and
relevant discussions are given in Sect. 4. The final section is
the conclusion. The evaluation of the 3S charmonium distri-
bution amplitudes is relegated to the appendix.

2 Kinematics and the wave functions

It is convenient to work at the Bc meson rest frame and the
light cone coordinate. The Bc meson momentum P1 and the
charmonium meson momentum P2 are chosen as [34]

P1 = M√
2
(1, 1, 0T ), P2 = M√

2
(rη+, rη−, 0T ), (1)

with the ratio r = m/M and m(M) is the mass of the char-
monium (Bc) meson. The factors η± = η ± √

η2 − 1 come
with the definition of the η of the form [34]

η = 1 + r2

2r
− q2

2rM2 , (2)

with the momentum transfer q = P1 − P2. When the final
state is a vector meson, the longitudinal and transverse polar-
ization vector εL ,T can be written as

εL = 1√
2
(η+,−η−, 0T ), εT = (0, 0, 1). (3)

The momentum of the valence quarks k1,2, whose notation
is displayed in Fig. 1, is parametrized as

k1 =
(
x1

M√
2
, x1

M√
2
,k1T

)
,

k2 =
(

M√
2
x2rη

+,
M√

2
x2rη

−,k2T

)
, (4)

the k1T,2T , x1,2 represent the transverse momentum and lon-
gitudinal momentum fraction of the charm quark inside the
meson, respectively. One should note that there is no end-
point singularity in the Bc meson decays and the integral is
still convergent without the parton transverse momentum k1T

of Bc meson in the collinear factorization. However, we here
still keep it to suppress some non-physical contributions near
the singularity (for example the singularity at x1 = 0.1923
for Bc → J/ψ decay).

c(k1)

c̄(k2)

P1 P2

b̄

Bc P/V

l+

νl

(a) (b)

Fig. 1 The leading-order Feynman diagrams for the semileptonic decays B+
c → P/Vl+νl with l = (e, μ, τ)
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There are three typical scales of the Bc to charmonium
decays: M , m, and the heavy-meson and heavy-quark mass
difference 	̄. These three scales allow for a consistent power
expansion in m/M and in 	̄/m under the hierarchy of
M � m � 	̄. In the heavy-quark and large-recoil lim-
its, based on the kT factorization theorem, the corresponding
form factors can be expressed as the convolution of the hard
amplitude with Bc and charmonium meson wave functions.
The hard amplitude can be treated by perturbative QCD at
the leading order in an αs expansion (single gluon exchange
as depicted in Fig. 1). The higher-order radiative corrections
generate the logarithm divergences, which can be absorbed
into the meson wave functions. One also encounters double
logarithm divergences when collinear and soft divergences
overlap, which can be summed to all orders to give a Sudakov
factor. After absorbing all the soft dynamics, the initial and
final state meson wave functions can be treated as nonpertur-
bative inputs, which are not calculable but universal.

Similar to the situation of the B meson [35], under above
hierarchy, at leading order in 1/M , the Bc meson light-cone
matrix element can be decomposed as [36–40]
∫

d4zeik1·z〈0|b̄α(0)c(z)β |Bc(P1)〉

= i√
2Nc

{(/P1 + M)γ5[Bc (k1) + /v̄Bc (k1)]}αβ, (5)

with the unit vectors v = (0, 1, 0T ) on the light cone. Here,
we only consider the contribution from Bc , while the contri-
bution of ̄Bc starting from the next-to-leading-power 	̄/M
is numerically neglected [41,42]. In coordinate space Bc
can be expressed by

Bc (x) = i√
2Nc

[(/P1 + M)γ5φBc(x)]. (6)

The distribution amplitude φBc is adopted in the form [32]

φBc (x) = Nx(1 − x) exp

[

−mb + mc

8mbmcω

(
m2

c

x
+ m2

b

1 − x

)]

,

(7)

with shape parameters ω = 0.5 ± 0.1 GeV and the normal-
ization conditions
∫ 1

0
φBc(x)dx = 1. (8)

N is the normalization constant.
For the charmonium meson, because of its large mass,

the higher-twist contributions are important. The light-cone
wave functions are obtained in powers ofm/E or 	̄/E where
E(≈ M) is the energy of the charmonium meson. In terms of
the notation in Ref. [43], we decompose the nonlocal matrix
elements for the longitudinally and transversely polarized
vector mesons (V = J/ψ,ψ(2S), ψ(3S)) and pseudoscalar
mesons (P = ηc, ηc(2S), ηc(3S)) into

〈V (P2, εL)|c̄(z)αc(0)β |0〉 = 1√
2Nc

×
∫ 1

0
dxeix P2·z[m/εLαβψ L(x, b) + (/εL/P2)αβψ t (x, b)],

〈V (P2, εT )|c̄(z)αc(0)β |0〉 = 1√
2Nc

×
∫ 1

0
dxeix P2·z[m/εT αβψV (x, b) + (/εT /P2)αβψT (x, b)],

〈P(P2)|c̄(z)αc(0)β |0〉 = − i√
2Nc

×
∫ 1

0
dxeix P2·z[(γ5/P2)αβψv(x, b) + m(γ5)αβψ s(x, b)],

(9)

respectively. For the distribution amplitudes of the 1S and 2S
states, the same form and parameters are adopted as in [27,
28]. The distribution amplitudes of 3S states will be derived
in the appendix.

3 Form factors and semileptonic differential decay
rates

The two factorizable emission Feynman diagrams for the
semileptonic Bc decays are given in Fig. 1. The transition
form factors, F+(q2), F0(q2), V (q2), and A0,1,2(q2) are
defined via the matrix element [44,45],

〈P(P2)|c̄γ μb|Bc(P1)〉 =
[
(P1 + P2)

μ

− M2 − m2

q2 qμ

]
F+(q2) + M2 − m2

q2 qμF0(q
2), (10)

〈V (P2)|c̄γ μb|Bc(P1)〉 = 2iV (q2)

M + m
εμνρσ ε∗

ν P2ρ P1σ , (11)

〈V (P2)|c̄γ μγ5b|Bc(P1)〉 = 2mA0(q
2)

ε∗ · q
q2 qμ

+(M + m)A1(q
2)

[
ε∗μ − ε∗ · q

q2 qμ

]

−A2(q
2)

ε∗ · q
M + m

[
(P1 + P2)

μ − M2 − m2

q2 qμ

]
, (12)

with ε0123 = +1. In the large-recoil limit (q2 = 0), the
following relations should hold to cancel the poles:

F0(0) = F+(0), A0(0) = 1 + r

2r
A1(0) − 1 − r

2r
A2(0).

(13)

In the pQCD framework, it is convenient to compute the other
equivalent auxiliary form factors f1(q2) and f2(q2), which
are related to F+(q2) and F0(q2) by [31]
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F+ = 1

2
( f1 + f2),

F0 = 1

2
f1

[
1 + q2

M2 − m2

]
+ 1

2
f2

[
1 − q2

M2 − m2

]
.

(14)

Following the derivation of the factorization formula for the
B → P , B → V transitions [46], we obtain these form
factors as follows:

f1(q
2) = 4

√
2

3
πM2 fBC f r

∫ 1

0
dx1dx2

×
∫ ∞

0
b1b2db1db2φBc (x1)

×[ψ L(x2, b2)r(x2 − 1) − ψ t (x2, b2)(rb − 2)]
×Eab(ta)h(αe, βa, b1, b2)St (x2)

−[ψ L(x2, b2)(r − 2ηx1) + ψ t (x2, b2)2(x1 − rc)]
×Eab(tb)h(αe, βb, b2, b1)St (x1), (15)

f2(q
2) = 4

√
2

3
πM2 fBC f

∫ 1

0
dx1dx2

×
∫ ∞

0
b1b2db1db2φBc (x1)

×[ψ L(x2, b2)(2rb − 1 − 2rη(x2 − 1))

+ψ t (x2, b2)2r(x2 − 1)]Eab(ta)h(αe, βa, b1, b2)St (x2)

−[ψ L(x2, b2)(rc + x1) − ψ t (x2, b2)2r ]
×Eab(tb)h(αe, βb, b2, b1)St (x1), (16)

A0(q
2) = −2

√
2

3
πM2 fBC f

∫ 1

0
dx1dx2

×
∫ ∞

0
b1b2db1db2φBc(x1)

× [ψ L(x2, b2) (1 − 2rb − r(x2 − 1)(r − 2η))

−ψ t (x2, b2)r (2x2 − rb)]Eab(ta)

×h(αe, βa, b1, b2)St (x2)

−ψ L(x2, b2)[rc + r2 + x1(1 − 2rη)]
×Eab(tb)h(αe, βb, b2, b1)St (x1), (17)

A1(q
2) = 4

√
2

3

r

1 + r
πM2 fBC f

∫ 1

0
dx1dx2

×
∫ ∞

0
b1b2db1db2φBc (x1)

×[ψV (x2, b2) (−2rb + ηr(x2 − 1) + 1)

+ ψT (x2, b2)[ηrb − 2(η + r(x2 − 1))]]
× Eab(ta)h(αe, βa, b1, b2)St (x2)

− ψV (x2, b2)[rc − x1 + ηr ]
×Eab(tb)h(αe, βb, b2, b1)St (x1), (18)

A2(q
2) = −A1

(1 + r)2(r − η)

2r(η2 − 1)
− 2πM2 fBC f

√
2

3

1 + r

η2 − 1

×
∫ 1

0
dx1dx2

∫ ∞

0
b1b2db1db2φBc (x1)

×[ψ t (x2, b2)(rb(1 − ηr) + 2r2(x2 − 1)

−2ηr(x2 − 2) − 2)

−ψ L(x2, b2)(2rb(η − r) − η + r(ηr(x2 − 1)

−2η2(x2 − 1) + x2))]
×Eab(ta)h(αe, βa, b1, b2)St (x2)

+ψ L(x2, b2)[rc(r − η) + ηr2

+r
(
−2η2x1 + x1 − 1

)
+ ηx1]

×Eab(tb)h(αe, βb, b2, b1)St (x1), (19)

V (q2) = 2

√
2

3
πM2 fBC f (1 + r)

×
∫ 1

0
dx1dx2

∫ ∞

0
b1b2db1db2φBc (x1)

×[ψV (x2, b2)r (1 − x2) + ψT (x2, b2)(rb − 2)]
×Eab(ta)h(αe, βa, b1, b2)St (x2)

−ψV (x2, b2)r Eab(tb)h(αe, βb, b2, b1)St (x1),

(20)

with rb,c = mb,c
M . αe and βa,b are the virtuality of the internal

gluon and quark, respectively. Their expressions are

αe = −M2[x1 + η+r(x2 − 1)][x1 + η−r(x2 − 1)],
βa = m2

b − M2[1 + η+r(x2 − 1)][1 + η−r(x2 − 1)],
βb = m2

c − M2[η+r − x1][η−r − x1]. (21)

The explicit expressions of the functions Eab, the scales
ta,b, and the hard functions h are referred to [27]. In fact,
if we take q2 → 0, these expressions are agree with the
results in Ref. [28]. At the quark level, the charged current
Bc → P(V )lν decays occur via the b → clνl transition. The
effective Hamiltonian for the b → clνl transition is written
as [47]

Heff = GF√
2
V ∗
cbb̄γμ(1 − γ5)c ⊗ ν̄lγ

μ(1 − γ5)l, (22)

where GF = 1.16637 × 10−5GeV−2 is the Fermi coupling
constant and Vcb is one of the CKM matrix elements.

The differential decay rate of Bc → Plν reads [14]

d�

dq2 (Bc → Plν) = G2
F |Vcb|2

384π3M3q2

√
λ(q2)

(

1 − m2
l

q2

)2

× [3m2
l (M

2 − m2)2|F0(q
2)|2

+ (m2
l + 2q2)λ(q2)|F+(q2)|2], (23)

where ml is the mass of the leptons and λ(q2) = (M2 +
m2 − q2)2 − 4M2m2. Since the electron and muon are very
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light compared with the charm quark, we can safely neglect
the masses of these two kinds of leptons in the analysis. For
the channel of Bc → Vlν, the decay rates in the transverse
and longitudinal polarization of the vector charmonium can
be formulated as [14]

d�±
dq2 (Bc → Vlν) = G2

F |Vcb|2
384π3M3 λ3/2(q2)

(

1 − m2
l

q2

)2

×(m2
l + 2q2)

[
V (q2)

M + m
∓ (M + m)A1(q2)

√
λ(q2)

]2

,

d�L

dq2 (Bc → Vlν) = G2
F |Vcb|2

384π3M3q2

√
λ(q2)

(

1 − m2
l

q2

)2

×
{

3m2
l λ(q2)A2

0(q
2) + m2

l + 2q2

4m2

[
(M2

× − m2 − q2)(M + m)A1(q
2) − λ(q2)

M + m
A2(q

2)

]2
}

.

(24)

The combined transverse and total differential decay widths
are defined as

d�T

dq2 = d�+
dq2 + d�−

dq2 ,
d�

dq2 = d�T

dq2 + d�L

dq2 . (25)

4 Numerical results and discussions

In our calculations, some parameters are used as inputs,
which are listed in Table 1.

As known, the pQCD results of these form factors are
reliable only in the small q2 region. For the form factors in the
largeq2 region, the fast rise of the pQCD results indicates that
the perturbative calculation gradually becomes unreliable. In
order to extend our results to the whole physical region, we
first perform the pQCD calculations to these form factors in
the lower q2 region (q2 ∈ (0, ξ(M−m)2) with ξ = 0.2(0.5)

for the Bc → 1S(2S/3S) transition), and then we make an
extrapolation for them to the larger q2 region (q2 ∈ (ξ(M −
m)2, (M−m)2)). There exist in the literature several different

approaches for extrapolating the form factors from the small
q2 region to the large q2 region. The three-parameter form is
one of the pervasive models, where the fit function is chosen
as

Fi (q
2) = Fi (0) exp

[

a
q2

M2 + b

(
q2

M2

)2
]

, (26)

where Fi denotes any of the form factors, and a, b are the
fitted parameters.

Our results of the transition form factors at the scale q2 =
0 together with the fitted parametersa,b are collected in Table
2, where the theoretical uncertainties are estimated including
three aspects.

The first kind of uncertainties is from the shape parame-
ters ω in the initial and final states and the charm-quark mass
mc. In the evaluation, we vary the values of ω within a 20 %
range and mc = 1.275 GeV by ±0.025 GeV. We find that, in
this work, the form factors are less sensitive to these hadronic
parameters than our previous studies [27,28]. For example,
the error induced by mc is just a few percent here, while
in Ref. [28] this can reach 10–20 %. This can be understood
from the Bc meson wave function. In Ref. [28], the δ function
depends strongly on the mass of charm quark which results
in a relative large uncertainty. The second error comes from
the decay constants of the final charmonium meson, which
are shown in Table 1. Due to the low accuracy measurement
of the decay width of the double photons decay of the pseu-
doscalar charmonia, the relevant uncertainty of F0.+ is large.
The last one is caused by the variation of the hard scale from
0.75 to 1.25 t. Most of this uncertainty is less than 10%, which
means the next-to-leading-order contributions can be safely
neglected. The errors from the uncertainty of the CKM matrix
elements are very small, and they have been neglected.

It shows that the Bc → P/V (1S, 2S) transition form
factors are a bit larger than our previous calculations [27,28].
It is because, here, instead of the traditional zero-point wave
function, we have used the light-cone wave function for the
Bc meson [32]. The shape of the leading twist distribution
amplitude of the Bc meson together with the final S-wave
charmonium states are displayed in Fig. 2. It is easy to see that

Table 1 The values of the input parameters for numerical analysis. The tensor decay constant f TV are determined through the assumption f TV mV =
2 fV mc, which has been used in [48]

Mass (GeV) MBc = 6.277 [28] mb = 4.18 [28] mc = 1.275 [28] mτ = 1.777 [12] mJ/ψ = 3.097 [27]
mηc = 2.981 [27] mψ(2S) = 3.686 [28] mηc(2S) = 3.639 [28] mηc(3S) = 3.940 [12] mψ(3S) = 4.040 [12]

CKM Vcb = 40.9 × 10−3 [28] Vud = 0.97425 [28]

Decay constants(MeV) fBc = 489 [27] fπ = 131 [27] f J/ψ = 405 ± 14 [27] fηc = 420 ± 50 [27]

fψ(2S) = 296+3
−2 [28] fηc(2S) = 243+79

−111 [28] fψ(3S) = 187 ± 8 [12] fηc(3S) = 180+27
−32 [12]

f TJ/ψ = 333 ± 12 f Tψ(2S) = 205+2
−1 f Tψ(3S) = 118 ± 5

Lifetime τBc = 0.453 × 10−12 s [27]
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Table 2 The fit parameters a, b, and the pQCD predictions of F0,+(0),
A0,1,2(0), and V (0) for Bc → nS(n = 1, 2, 3) decays, where the uncer-
tainties come from the hadronic parameters including shape parameters

ω in the initial and final state wave functions and charm-quark mass
mc, decay constants, and the hard scale t , respectively

Fi F Bc→1S
i (0) a b Fi F Bc→2S

i (0) a b Fi F Bc→3S
i (0) a b

F0 1.06+0.09+0.13+0.10
−0.08−0.13−0.02 3.36 10.21 F0 1.04+0.13+0.34+0.13

−0.10−0.48−0.03 4.12 −30.33 F0 0.78+0.14+0.12+0.08
−0.13−0.14−0.02 1.81 −167.96

F+ 1.06+0.09+0.13+0.10
−0.08−0.13−0.02 4.18 10.46 F+ 1.04+0.13+0.34+0.13

−0.10−0.48−0.03 5.28 −26.73 F+ 0.78+0.14+0.12+0.08
−0.13−0.14−0.02 3.25 −155.92

A0 0.78+0.10+0.03+0.08
−0.06−0.02−0.00 5.41 10.86 A0 0.80+0.13+0.01+0.07

−0.11−0.01−0.01 5.16 −21.08 A0 0.41+0.10+0.02+0.04
−0.09−0.02−0.01 −3.01 −98.48

A1 0.96+0.11+0.04+0.10
−0.07−0.03−0.01 5.24 −15.18 A1 0.87+0.17+0.01+0.10

−0.11−0.01−0.00 3.23 −25.03 A1 0.41+0.08+0.02+0.03
−0.08−0.02−0.00 −3.07 −162.03

A2 1.36+0.16+0.04+0.17
−0.12−0.06−0.00 7.60 −5.94 A2 1.22+0.28+0.02+0.22

−0.10−0.02−0.00 8.51 −63.77 A2 0.66+0.05+0.03+0.01
−0.11−0.03−0.01 0.10 −19.12

V 1.59+0.11+0.06+0.14
−0.16−0.05−0.02 5.04 5.88 V 1.71+0.47+0.02+0.13

−0.23−0.02−0.05 3.77 −3.78 V 1.07+0.20+0.05+0.09
−0.18−0.05−0.02 0.69 −116.48
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x

Fig. 2 The overlap of the leading twist distribution amplitudes of the
initial and final state at b = 0. Dashed, dotted, solid and short dash
dotted lines correspond to Bc, 1S, 2S, and 3S states, respectively

the dashed line is broader in shape than that of the zero-point
wave function (φBc(x) ∝ δ(x − rc)). The overlap between
the initial and final state wave functions becomes larger in
this work, which certainly induces larger form factors. We
also can see that the form factors of the Bc weak transitions
to the 2S charmonium states at zero momentum transfer are
comparable with the corresponding values of Bc decays to the
1S charmonium states in Table 2. Since one of the peaks of the
2S charmonium states wave function is so close to the peak
of the Bc meson wave function, the overlaps between them
are large, which enhances the values of the Bc → P/V (2S)

form factors. However, due to the presence of the nodes in
the 3S states wave function and the smaller decay constants,
the corresponding form factors of the Bc decays to the 3S
states are slightly suppressed.

We plot the q2 dependence of the weak form factors with
center values without theoretical uncertainties in Fig. 3 for the
six decay processes in their physical kinematic range. We can

see the different q2 dependence of the form factors among
the Bc decays to different S-wave charmonia clearly. For
example, the form factors for the Bc → P/V (1S) transition
have a relatively strongq2 dependence, but those of the Bc →
P/V (2S/3S) transition show a little weaker q2 dependence.
In addition, most of these form factors become larger with
increasing q2. However, this behavior is not universal. For
instance, from Fig. 3 some of the form factors for Bc →
P/V (2S/3S) decays decreases with the increasing q2 in the
large region. A similar situation also exists in the light-front
quark model [19] and in the ISGW2 quark model [49]. This
behavior of the difference for the corresponding final states
is the consequence of their different nodal structure in the
wave functions.

Integrating the expressions in Eqs. (23) and (24) over the
variable q2 in the physical kinematical region, one obtains
the relevant decay widths. Then it is straightforward to cal-
culate the branching ratios. The results of our evaluation of
the branching ratios for all the considered decays appear in
Table 3 in comparison with predictions of other approaches.
For the Bc → P/V (1S) decays, our results are comparable
to those of [6,7] within the error bars, but larger than the
results from other models due to the values of the weak form
factors.

For the Bc → P/V (2S, 3S) decays our predictions are
generally close to the light-cone QCD sum rules results of
[12]. However, the relativistic quark model predictions for the
Bc → P/V (3S) decays in Refs. [9,10] are typically smaller,
which can be discriminated by the future LHC experiments.

From Table 3, we can see the former four processes have
a relatively large branching ratio (10−2), while the branch-
ing ratios of the last four processes are comparatively small
(10−7 ∼ 10−3). They have the following hierarchy:

BR(Bc → P/V (3S)) < BR(Bc → P/V (2S))

< BR(Bc → P/V (1S)). (27)

This is due to the tighter phase space, smaller decay con-
stants, and the less sensitive dependence of the form factors
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Fig. 3 Form factors of the Bc decays to the S-wave charmonium states defined as in Eq. (26). The left panel is for the Bc → P processes, while
the right panel for Bc → V processes

on the momentum transfer q2 for the higher excited state,
which can be seen in Fig. 3. The combined effect above sup-
presses the branching ratios of the semileptonic Bc decays
to radially excited charmonia. For decays to higher char-
monium excitations such a suppression should be more pro-

nounced. In order to reduce the theoretical uncertainties from
the hadronic parameters and the decay constants, we defined
six ratios between the electron and tau branching ratios, i.e.

R(P/V ) = BR(B+
c → P/Ve+νe)

BR(B+
c → P/V τ+ντ )

. (28)
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Table 3 Branching ratios (in units of %) of Bc → P/Vlνl decays evaluated by pQCD and by other methods in the literature. The errors induced
by the same sources as in Table 2

Modes This work [6,7] [8] [9,10] [11] [12] [13] [14] [15] [16] [49]

B+
c → ηce+νe 4.5+0.7+1.2+0.9

−0.7−1.0−0.2 2.1 0.55 0.42 0.81 1.64 0.67 0.48 0.5

B+
c → J/ψe+νe 5.7+1.2+0.5+1.1

−0.8−0.4−0.2 6.7 1.73 1.23 2.07 2.37 1.49 1.54 3.3

B+
c → ηcτ

+ντ 2.8+0.4+0.7+0.6
−0.4−0.6−0.1 0.64 0.22 0.49 0.19 0.17

B+
c → J/ψτ+ντ 1.7+0.4+0.1+0.3

−0.3−0.1−0.1 0.52 0.49 0.65 0.37 0.41

B+
c → ηc(2S)e+νe 0.77+0.20+0.58+0.20

−0.14−0.55−0.05 0.07 0.03 0.11 0.02 0.046

B+
c → ψ(2S)e+νe 1.2+0.6+0.1+0.3

−0.3−0.1−0.1 0.1 0.03 0.12 0.21

B+
c → ηc(2S)τ+ντ 5.3+1.4+4.1+1.4

−1.0−3.8−0.3 × 10−2 0.81 × 10−2 1.3 × 10−3

B+
c → ψ(2S)τ+ντ 8.4+3.6+0.4+1.5

−1.3−0.4−0.1 × 10−2 1.5 × 10−2

B+
c → ηc(3S)e+νe 0.14+0.05+0.05+0.03

−0.04−0.04−0.01 5.5 × 10−4 1.9 × 10−2

B+
c → ψ(3S)e+νe 3.6+1.8+0.3+0.6

−1.3−0.4−0.0 × 10−2 5.7 × 10−4

B+
c → ηc(3S)τ+ντ 1.9+0.7+0.6+0.4

−0.6−0.6−0.1 × 10−4 5.0 × 10−7 5.7 × 10−4

B+
c → ψ(3S)τ+ντ 3.8+1.5+0.2+0.5

−1.4−0.4−0.1 × 10−5 3.6 × 10−6

Table 4 Some of the ratios among the branching fractions of the Bc decays in comparison with the data and other theoretical estimates, Here l
stands for l = e, μ. The errors correspond to the combined uncertainty in the hadronic parameters, decay constants, and the hard scale

Ratios This work NRQCD [6,7] BSRQM [8] RQM [9,10] QCDPM [16] LFQM [19] Data [1,30]

BR(B+
c →J/ψπ+)

BR(B+
c →J/ψl+νl )

0.046+0.003
−0.002 0.043 0.064 0.050 0.039 0.058 0.0469

BR(B+
c →ψ(2S)π+)

BR(B+
c →ψ(2S)l+νl )

0.068+0.000
−0.007 0.258 0.355 0.158 0.148

BR(B+
c →ηcπ

+)

BR(B+
c →ηcl+νl )

0.116+0.010
−0.001 0.247 0.191 0.202 0.052

BR(B+
c →ηc(2S)π+)

BR(B+
c →ηc(2S)l+νl )

0.169+0.031
−0.000 0.432 0.531 0.33

BR(B+
c →ψ(2S)π+)

BR(B+
c →J/ψπ+)

0.32+0.01
−0.04 0.26 0.20 0.18 0.15 0.23 0.268

BR(B+
c →ηc(2S)π+)

BR(B+
c →ηcπ+)

0.25+0.07
−0.14 0.27 0.20 0.25

From our numerical values listed in Table 3, we obtain

R(J/ψ) = 3.4+0.1
−0.1, R(ψ(2S)) = 14.3+0.9

−1.4,

R(ψ(3S)) = 947.4+71.1
−0.0 ,

R(ηc) = 1.6+0.0
−0.0, R(ηc(2S)) = 14.5+0.0

−0.3,

R(ηc(3S)) = 736.8+21.8
−9.5 , (29)

where the errors correspond to the combined uncertainty in
the hadronic parameters, decay constants, and the hard scale.
Since these parameter dependences canceled out in Eq. (28),
the total theoretical errors of these ratios are only a few per-
cent, much smaller than those for the branching ratios. In gen-
eral, these ratios are of the same order of magnitude in the dif-
ferent approaches except the light-cone QCD sum rules [12],
where it is obtained the smallest values ofR(ηc(3S)) = 33.3.

For a more direct comparison with the available experi-
mental data [1], we need to recalculate some of the nonlep-
tonic Bc decays by using the same wave functions and input

parameters as this paper, whose results are

BR(B+
c → J/ψπ+) = 2.6+0.6+0.2+0.8

−0.4−0.2−0.2 × 10−3,

BR(B+
c → ηcπ

+) = 5.2+1.3+1.3+1.8
−0.6−1.2−0.2 × 10−3,

BR(B+
c → ψ(2S)π+) = 8.2+2.1+0.2+2.7

−2.4−0.1−0.7 × 10−4,

BR(B+
c → ηc(2S)π+) = 1.3+0.5+0.9+0.7

−0.1−0.9−0.0 × 10−3,

BR(B+
c → ψ(3S)π+) = 4.8+2.0+0.5+1.5

−1.7−0.5−0.3 × 10−4,

BR(B+
c → ηc(3S)π+) = 1.4+0.4+0.4+0.4

−0.5−0.4−0.1 × 10−3, (30)

where the errors induced by the same sources as in Table 2.
The ratios among the branching fractions are shown

explicitly in Table 4, from which we can see that the ratios
BR(B+

c →J/ψπ+)

BR(B+
c →J/ψl+νl )

and BR(B+
c →ψ(2S)π+)

BR(B+
c →J/ψπ+)

are well consistent

with the recent data [1,30], and also comparable with the pre-
diction of the NRQCD [6,7]. Furthermore the latter still agree
with the previous pQCD calculations [28] 0.29, although
both BR(B+

c → ψ(2S)π+) and BR(B+
c → J/ψπ+)
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Table 5 The partial branching ratios and polarizations �L
�T

of Bc → Vlνl decays in different q2 regions

Region (1) Region (2) Total Region (1) Region (2) Total

BR(B+
c → J/ψe+νe) 2.3 × 10−2 3.4 × 10−2 5.7 × 10−2 BR(B+

c → J/ψτ+ντ ) 0.6 × 10−2 1.1 × 10−2 1.7 × 10−2

�L
�T

0.82 0.33 0.49 �L
�T

0.76 0.57 0.63

BR(B+
c → ψ(2S)e+νe) 6.1 × 10−3 5.5 × 10−3 11.6 × 10−3 BR(B+

c → ψ(2S)τ+ντ ) 3.1 × 10−4 5.3 × 10−4 8.4 × 10−4

�L
�T

1.22 0.56 0.85 �L
�T

0.82 0.61 0.69

BR(B+
c → ψ(3S)e+νe) 3.3 × 10−4 0.3 × 10−4 3.6 × 10−4 BR(B+

c → ψ(3S)τ+ντ ) 2.2 × 10−7 1.6 × 10−7 3.8 × 10−7

�L
�T

1.38 0.23 1.17 �L
�T

0.49 0.39 0.45

are enhanced compared with the corresponding values of
[27,28].

We now investigate the relative importance of the longi-
tudinal (�L ) and transverse (�T ) polarizations contributions
to the branching ratios of Bc → Vlνl decays within Region
(1), Region (2), and the whole physical region, whose results
and the ratios �L

�T
are displayed separately in Table 5. For

light electron and muon, the regions are defined as: Region
(1): 0 < q2 < (M − m)2/2; Region (2): (M − m)2/2 <

q2 < (M − m)2. For the heavy lepton τ , The first region is
m2

τ < q2 < [(M − m)2 + m2
τ ]/2 while the second region is

[(M − m)2 + m2
τ ]/2 < q2 < (M − m)2. From Table 5, all

of �L
�T

are < 1 in Region (2), which means that the transverse
polarization dominates the branching ratios in this region. It
can be understood as follows. For the Bc → 1S, 2S decays,
the form factor V as shown in Fig. 3 increase as the q2

increases, which enhances the transverse polarization con-
tribution in the large q2 region, while for the Bc → 3S
decay, although the value of V decreases gradually with
increasing q2, the form factor A1, which gives a dominant
contribution to �L , is significantly suppressed in the large
region, and as a results the dominant contributions to the
branching ratios of Bc → ψ(2S) decays come from Region
(1).

For Bc → ψ(2S, 3S)eνe decays �L is comparable with
�T in the whole physical region. These results will be tested
by LHCb and the forthcoming Super-B experiments.

5 Conclusion

We calculate the transition form factors and obtain the
branching ratios of the semileptonic decays of Bc meson to
S-wave charmonium states by employing the pQCD factor-
ization approach. By using the light-cone wave function for
the Bc meson, the theoretical uncertainties from the nonper-
turbative hadronic parameters are largely reduced. It is found
that the processes of Bc to the ground state charmonium
have comparatively large branching ratios (10−2), while the
branching ratios of other processes are relatively small owing
to the phase space suppression, smaller decay constants, and

the weaker q2 dependence of the form factors. The theo-

retically evaluated ratio BR(B+
c →J/�π+)

BR(B+
c →J/�μ+νμ)

= 0.046+0.003
−0.002

is consistent with the recent data from LHCb. In addition,
some interesting ratios among these branching fractions are
discussed and compared with other studies. In general, these
ratios in the different approaches are of the same order of
magnitude, while there are also large discrepancies for spe-
cific decay modes. The partial branching ratios for transverse
and longitudinal polarizations were investigated separately
in Bc → Vlνl decays. We found that the transverse polar-
ization gives a large contribution in the large q2 region. For
the semileptonic Bc → ψ(2S, 3S)eνe decays the longitudi-
nal contribution is comparable with the transverse contribu-
tion in the whole physical region. These theoretical predic-
tions could be tested at the ongoing and forthcoming exper-
iments.
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Appendix A: Wave functions of the 3S state

In the quark model, ηc(3S) and ψ(3S) are the second excited
states of ηc and J/ψ , respectively. The 3S means that, for
these states, we have the radial quantum number n = 3 and
the orbital angular momentum l = 0. The radial wave func-
tion of the corresponding Schrödinger state for the harmonic-
oscillator potential is given by
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�(3S)(r) ∝
(

15

4
− 5α2r2 + α4r4

)
e− α2r2

2 , (A1)

where α2 = mω
2 and ω is the frequency of oscillations or the

quantum of energy. We perform the Fourier transformation
to the momentum space to get �3S(k) as

�(3S)(k) ∝ (15α4 − 20α2k2 + 4k4)e
− k2

2α2 , (A2)

with k2 being the square of the three momentum. In terms of
the substitution assumption,

k⊥ → k⊥, kz → m0

2
(x − x̄), m2

0 = m2
c + k2⊥
x x̄

, (A3)

with mc the c-quark mass and x̄ = 1 − x . We should make
the following replacement as regards the variable k2:

k2 → k2⊥ + (x − x̄)2m2
c

4x x̄
. (A4)

Then the wave function can be taken as

�(3S)(k) → �(3S)(x,k⊥) ∝
[

15α4

−5α2(k2⊥ + m2
c(x − x̄)2)

x x̄

+
(
k2⊥ + m2

c(x − x̄)2

2x x̄

)2
⎤

⎦ e
− k2⊥+m2

c (x−x̄)2

8x x̄α2 . (A5)

Applying the Fourier transform to replace the transverse
momentum k⊥ with its conjugate variable b, the 3S oscil-
lator wave function can be taken as

�(3S)(x,b) ∼
∫

d2k⊥e−ik⊥·b�(2S)(x,k⊥)

∝ x x̄T (x)e−x x̄ mc
ω

[ω2b2+( x−x̄
2x x̄ )2], (A6)

with

T (x) = 7 − 2
mc(x − x̄)2

ωx x̄
− 24mcωb

2x(1 − x)

+
(
mc(x − x̄)2

ωx x̄
− 4b2mcωx x̄

)2

. (A7)

We then propose the 3S states distribution amplitudes
inferred from Eq. (A6),

�(3S)(x, b) ∝ asy(x)T (x)e−x x̄ mc
ω

[ω2b2+( x−x̄
2x x̄ )2], (A8)

with the asy(x) being the asymptotic models, which are
given in [50]. Therefore, we have the distribution ampli-
tudes for the radially excited charmonium mesons ηc(3S)

and ψ(3S):

�L ,T,v(x, b) = f (T )
3S

2
√

2Nc
N Lx x̄T (x)e−x x̄ mc

ω
[ω2b2+( x−x̄

2x x̄ )2],

� t (x, b) = f T3S
2
√

2Nc
Nt (x − x̄)2T (x)

×e−x x̄ mc
ω

[ω2b2+( x−x̄
2x x̄ )2],

�V (x, b) = f3S
2
√

2Nc
NV [1 + (x − x̄)2]T (x)

×e−x x̄ mc
ω

[ω2b2+( x−x̄
2x x̄ )2],

�s(x, b) = f3S
2
√

2Nc
NsT (x)e−x x̄ mc

ω
[ω2b2+( x−x̄

2x x̄ )2], (A9)

with the normalization conditions

∫ 1

0
� i (x, 0)dx = f (T )

3S

2
√

2Nc
. (A10)

Nc above is the color number, Ni (i = L , t, V, s) are the
normalization constants. f3S and f T3S are the vector and ten-
sor decay constants, respectively. Since the energy spec-
trum of a three-dimensional harmonic oscillator is given by
Enl = [2(n − 1) + l + 3

2 ]ω, the value of the frequency ω

can be determined by the difference between the two adjacent
energy states. Here, the parameter ω ≈ (m4S−m3S)/2 ≈ 0.1
GeV.
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