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We propose a scheme to simulate topological physics within a single degenerate cavity, whose modes
are mapped to lattice sites. A crucial ingredient of the scheme is to construct a sharp boundary so that the
open boundary condition can be implemented for this effective lattice system. In doing so, the topological
properties of the system can manifest themselves on the edge states, which can be probed from the
spectrum of an output cavity field. We demonstrate this with two examples: a static Su-Schrieffer-Heeger
chain and a periodically driven Floquet topological insulator. Our work opens up new avenues to explore
exotic photonic topological phases inside a single optical cavity.
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Introduction.—The exploration of topological physics has
become one of the most fascinating frontiers in recent years
[1–3]. Since Haldane and Raghu proposed to transcribe the
topological features of electronic models into photonic ones
[1–5], studies on topological photonics have been widely
developed [6–19]. Although there is no concept of band
filling due to the absence of the Pauli exclusion principle,
bulk-edge correspondence is still present in this linear
bosonic system [7–10]. In such systems, the detection of
the topologically edge modes is regarded as one of the most
important and direct methods of probing their topological
properties [9,11,14,17,18,20–26].
Recent studies show that the internal degrees of freedom

of quantum systems [27–33] may be used as synthetic
dimensions, which lead to the reduction of physical
resources. In the context of photonics, it has been shown
[33,34] that synthetic gauge fields in a two-dimensional
(2D) system can be effectively simulated by using a 1D
array of degenerate cavities [35–37], where the internal
degenerate cavity modes serve as an extra dimension.
However, making identical cavities to form the array is
extremely challenging in practice. Hence, it is highly
desirable that topological phases can be simulated using
just a single cavity. Furthermore, how to control the cavity
decay and to construct the desired boundary condition for
photons are highly nontrivial tasks.
The main purpose of the present work is threefold. First,

we show that it is indeed possible to simulate certain
topological phases inside a single cavity. Second, we
propose a way to construct a sharp boundary, with which
edge states will emerge when the system enters the

topological regime. Finally, exploiting the high control-
lability of the system, we show how a Floquet topological
insulator can be generated by periodically modulating the
cavity system. This allows us to investigate Floquet
topological phases which possess many unique features
not present in static systems [38–45] and a further under-
standing of the system [10,14,39,40,46,47].
Effective 1D chain in a single cavity.—Figure 1(a)

illustrates schematically the cavity system we will be
working with. It contains a main cavity (horizontally
oriented in the figure), which supports Laguerre-
Gaussian (LG) modes with different orbital angular
momenta (OAM), and an auxiliary cavity (vertically
oriented in the figure), which is connected to the main
cavity by two beam splitters (BS1 and BS2). The electric
field of the LG mode, Ep

l , is characterized by the radial and
azimuthal quantum numbers p and l, respectively. It is
possible to make the resonance frequency of the modes to
be all degenerate, i.e., independent of p and l (for details,
see Refs. [33,34]). For our purpose, the radial quantum
number p is irrelevant, and we shall neglect it henceforth.
The azimuthal index l characterizes the OAM of the
photon, and the hopping between different OAM modes
is accomplished with the aid of the spatial light modulators
(SLMs) in the auxiliary cavity, which changes the OAM
(i.e., the azimuthal index l) of the photon by �δl. Denote
the annihilation operator for mode l as al; different OAM
modes are thus mapped to a 1D lattice chain, and the
hopping between them is described by a†l alþδl þ H:c: in the
lattice model. In general, arbitrary long-range hopping
can be realized by adjusting δl. The hopping strength is
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determined by the transmission or reflection coefficients
of the beam splitters and can be further controlled by the
phase retarders �ϕ [34]. The effective lattice system with
nearest-neighbor hopping is schematically illustrated in
Fig. 1. Note that the effective lattice size can be doubled if
we take into account that a given l mode comes with two
orthogonal polarizations (see below).
Creating a sharp boundary.—To realize open bounda-

ries for the effective lattice system, we would like the
cavity to have an OAM cutoff Lm, such that modes with
l ¼ 0; 1;…; Lm have negligible decay rates whereas all
other modes are not supported. The l ¼ 0 LG mode is the
usual Gaussian mode with intensity peaks at the center,
whereas l ≠ 0 LG modes all have a doughnut shape whose
intensities peak at a circle with the radius scaled as

ffiffi
l

p
.

This spatial intensity distribution and the finite size of the
cavity mirrors may lead to an l-dependent decay rate. Such
a soft boundary due to the

ffiffi
l

p
scaling can cause the serious

loss of photons with large l [34] and destroy all interesting
physics related to edge modes [see Fig. 4(c)].
To create a sharp boundary, we take advantage of the fact

that the l ¼ 0 mode can be easily distinguished from the
l ≠ 0modes and modify the cavity system as schematically
shown in Fig. 2(a). Here we put two SLMs in the main
cavity with δl ¼ �Lm, respectively. For photons traveling
in the main cavity in the direction as shown by the
arrows, their OAM will change when passing the SLMs.
Specifically, a photon with azimuthal index l to the left of
the SLMs will change it to l − Lm when traveling to the
right of the SLMs. Hence, the mode in the main cavity
becomes composite, and we label this mode pair ½l; l − Lm�
as jli. We make the two SLMs in the auxiliary cavity to
have δl ¼ �ðLm þ 1Þ, respectively. Finally, a hole is made
in each of the two beam splitters connecting the main and
the auxiliary cavities. The hole size is carefully designed so
that, ideally, a photon with l ¼ 0will always go through the
hole without being reflected, while all other modes with
l ≠ 0 will be reflected with a certain probability. It is not
difficult to see that [34], with this design, (i) a composite
mode j0i in the main cavity may hop to j1i, but not to j−1i,
(ii) a composite mode jLmimay hop to jLm − 1i, but not to
jLm þ 1i, and (iii) a composite mode jli with 0 < l < Lm
may hop to either jl − 1i or jlþ 1i. In other words, we

have succeeded in creating two sharp boundaries such that
only composite modes jl ¼ 0; 1;…; Lmi can exist in the
main cavity.
It is clear that the key here is the design of the hole in

the beam splitters, which should let the l ¼ 0 mode pass
through with high probability while not affecting too much
the l ≠ 0 modes. The sharpness of the boundary is then
determined by how well we can distinguish the l ¼ 0
photon from l ≠ 0 modes. We can achieve good distin-
guishability due to the small intensity overlap between
the l ¼ 0 mode with the adjacent l ¼ �1 modes.
Experimentally, sharper boundaries can be obtained for
larger hopping step n if we replace the two SLMs in
the auxiliary cavity with δl ¼ �ðLm þ nÞ. In this way,
the effective lattice sites are represented by modes
jl ¼ 0; n;…; nLmi. We need only to distinguish the l ¼ 0
mode from l ¼ �n modes whose intensity overlap scales
as e−n [see Fig. 2(b) and details in Ref. [34]].
With the creation of sharp boundaries, we can now use it

to explore the topological properties of the system. We will
use two examples below to demonstrate this.
Realizing and probing the Su-Schrieffer-Heeger (SSH)

model.—Our first example concerns the realization of the
SSH model [48], a prototypical 1D topological model, as
schematically illustrated in Fig. 3. Here we take advantage
of the fact that each OAM mode l comes with two
orthogonal polarizations, which we will map to lattice sites
as El;H → 2l and El;V → 2lþ 1. The coupling between
modes a2l and a2lþ1 can be easily accomplished with
polarization rotators inside the auxiliary cavities. The
coupling a2lþ1 ↔ a2lþ2 corresponds to a polarization-
dependent hopping El;V ↔ Elþ1;H, which can be realized

FIG. 1. (a) Illustration of the experiment setup about the
degenerate cavity. (b) The effective photonic circuit of (a). ϕ
is the imbalanced phase between the two arms of the auxiliary
cavity.

FIG. 2. (a) Proposed experimental setup of a single degenerate
cavity to simulate a 1D finite lattice using composite modes
induced by two SLMs with δl ¼ �Lm. Two hollow beam splitters
are employed so that only modes l ¼ 0 can transmit through the
hole. (c) is the effective photonic circuit of (a). (b) Normalized
intensity profiles IlðrÞ ¼ jElðrÞj2 for different lmodes calculated
using the parameters discussed in Ref. [34]. The vertical lines
indicate the possible center pinhole sizes in each BS for different
hopping steps n ¼ 1, 3, and 5, with the corresponding fraction of
l ¼ 0 photon intensity inside the pinhole as 78%, 96%, and 99%,
respectively.

PRL 118, 083603 (2017) P HY S I CA L R EV I EW LE T T ER S
week ending

24 FEBRUARY 2017

083603-2



with the combination of the PBSs and the SLMs [see
Fig. 3(c) and Ref. [34] for details]. The total effective
Hamiltonian simulated can then be written as HT ¼HþH0
with

H ¼
XLm

l¼0

½J0 cosðϕÞa†2la2lþ1 þ J1α
ðnÞ
lþ1a

†
2lþ1a2lþ2 þ H:c:�;

ð1Þ
where H is the desired SSH model Hamiltonian when

αðnÞlþ1 ¼ 1.H0 describes the interaction of other cavity modes
in the remaining lattice sites, whose explicit form can be
found in Ref. [34]. The phase-dependent coupling propor-
tional to cosϕ is due to the interference effect inside the
auxiliary cavity, which can be used as a convenient control
knob to adjust the hopping amplitude J00 ≡ J0 cosϕ [34].
The presence of a pinhole results in a reduction of the
coupling strength at the lattice site 2ðlþ 1Þ defined by

αðnÞlþ1 ¼ 1 − ηðnÞlþ1 for given hopping step n, where ηðnÞlþ1 is

the portion of photons for modes jðlþ 1Þni inside the

pinhole of the BSs. As shown in Ref. [34], ηðnÞlþ1 decreases

exponentially along with l. In the ideal case αðnÞlþ1 ¼ 1, the
system becomes topologically nontrivial when J00 < J1. In
the presence of sharp boundaries, this leads to topologically
induced edge states.
To illustrate how the presence of the edge states can be

detected, let us calculate the output spectrum of the cavity
using the Langevin equations [33,49]

∂taj ¼ −i½aj; HðtÞ� − γj
2
aj −

ffiffiffiffi
γj

p
ain;j; ð2Þ

with γj the decay rate on lattice site j. The output field is
linked to the dynamics inside the cavity through the
standard input-output relation aout;jðtÞ¼ain;jðtÞþ ffiffiffiffi

γj
p ajðtÞ.

In the frequency domain, this leads to aout;jðωÞ ¼P
j0 ðδjj0 − Tjj0 Þain;j0 ðωÞ with the transmission element

Tjj0 ¼ −ihjj ffiffiffi
Γ

p ½ω −H þ iΓ=2�−1 ffiffiffi
Γ

p jj0i and the decay
matrix Γ ¼ diagfγ0;…; γLmg.
Figures 4(a) and 4(b) show the total transmission rate

τðωÞ ¼ P
j;j0 jTjj0 j2 as functions of J00 for n ¼ 2 and 4,

respectively. The imperfection induced by the pinhole in
the BSs results in site-dependent hoppings characterized by

αðnÞlþ1 and unwanted coupling j0i → j − ni and jLmi →
jLm þ ni at boundaries [34], both of which are explicitly
taken into account. For n ¼ 2, the presence of such
unwanted tunneling couples bilateral edge modes in the
topological nontrivial regime. This results in the splitting of
edge modes into two branches around ω ¼ 0 [34]. For
larger hopping step n ¼ 4, the two branches merge, as such
hopping decreases exponentially with n. For comparison,
we plot the transmission rate for a soft boundary in
Fig. 4(c), where the presence of edge modes is completely
erased. This clearly demonstrates the importance of con-
structing the sharp boundary in our system. Figure 4(d)
illustrates the dynamics of N0 ¼ ha†0a0i, the amplitude of
the first site for n ¼ 2, when initially we inject an input

FIG. 3. Schematic diagram of simulating a 1D SSH chain.
(a) shows the skeleton inside of the main cavity with two-
auxiliary-cavity circuits depicted in (b) and (c), where optical
circuits related to the hopping J0 cosϕ and J1 are shown. (d) is
the diagrammatic representation of the Hamiltonian H. BS, beam
splitter. HBS, BS with a pinhole in the center. SLM, spatial light
modulator. HWP, half-wave plate. PBS, polarization beam splitter
which transmits vertical polarized photons and reflects horizontal
polarized photons.

FIG. 4. (a) and (b) show the spectrum τðωÞ of model (1) for J1 ¼ 1 and Lm ¼ 49 with the decay rates γj ¼ 0.05ð1þ e−j=
ffiffiffiffi
25

p
þ

e−jj−Lmj=
ffiffiffiffi
25

p
Þ for n ¼ 2 and n ¼ 4, respectively, where the influence of H0 in the remaining lattices is also taken into account. (c) shows

the output spectrum of a prolonged chain using the same decay as in (a), which corresponds to the soft boundary condition discussed in
the context. (d) shows the dynamics of N0 with hopping step n ¼ 2 for an input pulse aðtÞin;0 ¼ exp½−ðt − 3Þ2=8�=

ffiffiffiffiffiffiffiffiffi
2

ffiffiffi
π

pp
at site j ¼ 0

with the decay given in (a) for fixed J00 ¼ 0.9 and 1.1, respectively. (e) plots the amplitude N0 for different n at t ¼ 15 along with J00,
which drops to zero across the phase transition point.
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pulse from this site. In the topological regime J00=J1 < 1,
due to the presence of the edge state,N0 persists over a very
long time, whereas in the nontopological regime when
J00=J1 > 1, N0 decays to zero rather quickly. In Fig. 4(e),
we plot the value of N0 at t ¼ 15 as a function of J00 when
J1 is fixed to be 1 for different n. A transition at J00=J1 ¼ 1

can be easily seen, which can be viewed as clear evidence
of the topological phase transition at that critical point [34].
We note that the oscillation shown for a small hopping step
is due to the interference of two split edge modes in the
presence of unwanted hopping at boundaries. For larger n,
such oscillatory behavior disappears.
Floquet topological insulator and edge modes inside a

cavity.—In the second example, we take advantage of the
flexibility of our cavity system and also investigate a
periodically driven situation. Such Floquet systems have
received great attention recently, as they exhibit many
unique properties absent in the static models [41–45]. We
periodically modulate the system by modulating the phase
delay as ϕðtÞ ¼ ϕ0 þ α cosðΩt=2Þ, which leads to a peri-
odic modulation of the hopping amplitude J00 ¼ J0 cosϕ.
When ϕ0 ¼ 0, we have cos½α sinðΩt=2Þ� ¼ j0ðαÞ þ
2j2ðαÞ cosðΩtÞ þ… with jnðxÞ the nth-order Bessel func-
tion. We can choose α such that all high-order terms can
be safely neglected. This leads to a Floquet version of
Hamiltonian (1) where the hopping J0 cosϕ is now
replaced with the modified one as J0 þ λ cosð2πt=TÞ with
T ¼ 2π=Ω. Experimentally, such a high-frequency phase
modulation of ϕ can be implemented with the aid of an
electro-optic modulator, where the modulation frequency
can be as high as tens of gigahertz. This is much larger than
the typical cavity coupling strength (a few megahertz) and
is sufficient for our purpose.
The properties of such a periodic driven system

can be obtained using the standard Floquet theory
[34,38–40,46,47]. The quasienergies ϵq and Floquet modes
can be solved in the composite Floquet space T ⊗ R, where
R represents the usual Hilbert space and T is spanned by
the periodic functions htjmi ¼ eimΩt [34]. The index m
describes the number of phonons and defines the subspace
named as themth Floquet replica. The wave function in the
usual Hilbert space jψi ¼ P

m;jcm;jðtÞ expðimΩtÞjji can
be rewritten as jψFi ¼ P

m;jcm;jðtÞjm; ji, which satisfies
the modified Schrödinger equation [38]

djψFi
dt

¼ −iHFjψFi − γ

2
jψFi; ð3Þ

with the last term describing the dissipation effect.
The time-independent Floquet Hamiltonian reads HF ¼
F̂m ⊗ ĤðmÞ þ ΩF̂z ⊗ IR, where IR is the identity operator
in R space, HðtÞ ¼ P

mĤ
ðmÞeimΩt, ðFmÞi;j ¼ δj;iþm, and

ðFzÞm;n ¼ mΩδm;n.
For high driving frequencyΩ, different Floquet bands are

almost uncoupled. When Ω decreases, the interaction of

Floquet replicas for m ¼ 0 and m ¼ �1 leads to the
appearance of gaps at �Ω=2. A topological transition
occurs when bands in different replicas start to overlap
with each other and is signaled by the presence of edge
states at quasienergy ϵq ¼ 0 and Ω=2, respectively.
As in the previous example, the presence of the Floquet

phase transition and the associated edge states can be
observed by detecting the total output spectrum defined
as TðωÞ ¼ P

ψFð0Þ
P

m;j jcm;jðωÞj2 for ω ∈ ð−Ω=2;Ω=2Þ
[34]. The input state ψFð0Þ can be prepared by feeding the
cavity using mode j with different frequency ω ¼ mΩ.
When ω is resonant with the Floquet modes, it induces a
peak in the spectrum. Especially around ω ¼ 0 or Ω=2,
TðωÞ is almost completely determined by the presence of
the midgapped edge modes, while contributions from other
modes are greatly reduced. This provides direct evidence of
the Floquet topological phase transitions.
Figure 5 shows the cavity output spectrum as a function

of Ω within the Floquet zone, where the size effect of the
pinhole in the BSs is also involved. The presence of the
Floquet gaps is revealed by the vanishing TðωÞ around
quasienergy 0 and Ω=2. In addition, starting with a
topologically trivial phase at large Ω, Floquet topological
phase transitions occur when two replicas touch each other
as Ω decreases. The construction of boundaries enables us
to detect such transitions by observing the output spectrum
directly. As shown in Figs. 5(b) and 5(c), due to the
presence of finite gaps, the amplitudes of Tð0Þ and TðΩ=2Þ
exhibit a staircaselike structure and jump around the critical
point where the phase transition occurs. This can be viewed
as direct evidence of Floquet topological phase transitions.
Outlook and conclusion.—We have proposed a scheme

to simulate topological physics in a single optical cavity by
constructing sharp boundaries in the synthetic dimensions.
All the operations about the photonic OAM modes pro-
posed here can be reliably implemented through linear

FIG. 5. (a) The spectrum TðωÞ within the Floquet zone
ð−Ω=2;Ω=2Þ for different Ω for hopping step n ¼ 4 with the
same decay used in Fig. 4. Other parameters are ½J0; J1; λ� ¼
½2; 1; 0; 1.6� and Lm ¼ 49. (b) and (c) show the spectra Tð0Þ and
TðΩ=2Þ along with Ω, where a topological transition is man-
ifested by jumps around the phase transition points. v0 and vþ are
their corresponding numbers of edge modes defined in Ref. [34].

PRL 118, 083603 (2017) P HY S I CA L R EV I EW LE T T ER S
week ending

24 FEBRUARY 2017

083603-4



elements, which make the system experiment friendly and
resource undemanding. The proposed scheme can also be
extended to explore nontrivial topological physics in a
high-dimensional system [50,51]. In view of current
experimental progress on a synthetic magnetic field for
photons [19] and the strong light-atom coupling inside a
multimode resonator [52], effective photon-photon inter-
actions in a degenerate cavity regime [53–55] also become
possible. Therefore, our work also opens up an avenue to
explore various exotic topological photonic states in an
optical cavity system.
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