107,140 research outputs found
Deflection of Slow Light by Magneto-Optically Controlled Atomic Media
We present a semi-classical theory for light deflection by a coherent
-type three-level atomic medium in an inhomogeneous magnetic field or
an inhomogeneous control laser. When the atomic energy levels (or the Rabi
coupling by the control laser) are position-dependent due to the Zeeman effect
by the inhomogeneous magnetic field (or the inhomogeneity of the control field
profile), the spatial dependence of the refraction index of the atomic medium
will result in an observable deflection of slow signal light when the
electromagnetically induced transparency happens to avoid medium absorption.
Our theoretical approach based on Fermat's principle in geometrical optics not
only provides a consistent explanation for the most recent experiment in a
straightforward way, but also predicts the new effects for the slow signal
light deflection by the atomic media in an inhomogeneous off-resonant control
laser field.Comment: 4 pages, 3 figure
Robust observer for uncertain linear quantum systems
In the theory of quantum dynamical filtering, one of the biggest issues is
that the underlying system dynamics represented by a quantum stochastic
differential equation must be known exactly in order that the corresponding
filter provides an optimal performance; however, this assumption is generally
unrealistic. Therefore, in this paper, we consider a class of linear quantum
systems subjected to time-varying norm-bounded parametric uncertainties and
then propose a robust observer such that the variance of the estimation error
is guaranteed to be within a certain bound. Although in the linear case much of
classical control theory can be applied to quantum systems, the quantum robust
observer obtained in this paper does not have a classical analogue due to the
system's specific structure with respect to the uncertainties. Moreover, by
considering a typical quantum control problem, we show that the proposed robust
observer is fairly robust against a parametric uncertainty of the system even
when the other estimators--the optimal Kalman filter and risk-sensitive
observer--fail in the estimation.Comment: 11 pages, 1 figur
Is the meson a dynamically generated resonance? -- a lesson learned from the O(N) model and beyond
O(N) linear model is solvable in the large limit and hence
provides a useful theoretical laboratory to test various unitarization
approximations. We find that the large limit and the
limit do not commute. In order to get the correct large spectrum one has
to firstly take the large limit. We argue that the meson may
not be described as generated dynamically. On the contrary, it is most
appropriately described at the same level as the pions, i.e, both appear
explicitly in the effective lagrangian. Actually it is very likely the
meson responsible for the spontaneous chiral symmetry breaking in a lagrangian
with linearly realized chiral symmetry.Comment: 15 pages, 3 figurs; references added; discussions slightly modified;
revised version accepted by IJMP
Superconductivity of lanthanum revisited: enhanced critical temperature in the clean limit
The thickness dependence of the superconducting energy gap
of double hexagonally close packed (dhcp) lanthanum islands grown on W(110) is
studied by scanning tunneling spectroscopy, from the bulk to the thin film
limit. Superconductivity is suppressed by the boundary conditions for the
superconducting wavefunction at the surface and W/La interface, leading to a
linear decrease of the critical temperature as a function of the inverse
film thickness. For thick, bulk-like films, and are
40% larger as compared to literature values of dhcp La measured by other
techniques. This finding is reconciled by examining the effects of surface
contamination as probed by modifications of the surface state, suggesting that
the large originates in the superior purity of the samples investigated
here.Comment: 14 pages, 7 figure
Bagging ensemble selection for regression
Bagging ensemble selection (BES) is a relatively new ensemble learning strategy. The strategy can be seen as an ensemble of the ensemble selection from libraries of models (ES) strategy. Previous experimental results on binary classification problems have shown that using random trees as base classifiers, BES-OOB (the most successful variant of BES) is competitive with (and in many cases, superior to) other ensemble learning strategies, for instance, the original ES algorithm, stacking with linear regression, random forests or boosting. Motivated by the promising results in classification, this paper examines the predictive performance of the BES-OOB strategy for regression problems. Our results show that the BES-OOB strategy outperforms Stochastic Gradient Boosting and Bagging when using regression trees as the base learners. Our results also suggest that the advantage of using a diverse model library becomes clear when the model library size is relatively large. We also present encouraging results indicating that the non negative least squares algorithm is a viable approach for pruning an ensemble of ensembles
The interaction of polymer dispersed liquid crystal sensors with ultrasound
Polymer dispersed liquid crystals (PDLCs) have been shown to be sensitive to ultrasound through the acousto-optic effect. The acousto-optic response of PDLCs was studied over a broad frequency range (0.3–10 MHz). We demonstrate that the displacements required to produce acousto-optic clearing of PDLC films can be as low as a few nanometers, which is at least 103 times smaller than the PDLC droplet size, is 105 times smaller than the PDLC layer thickness, and of the order of the molecular size of the liquid crystal constituents. This suggests that the acousto-optic effect in PDLCs is due to the microscopic effects of the LC reorientation under torques or flows rather than the LC reorientation through macroscopic droplet deformation. The displacement required for clearing is related to the frequency of operation via an exponential decay. We attribute the observed frequency response to a freezing out of the rotational motion around the short axis of the liquid crystal. The reported frequency dependence and displacements required indicate that the effects and materials described here could be used for ultrasound visualization in a non-destructive testing context
- …