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Abstract. The thickness dependence of the superconducting energy gap ∆La of

double hexagonally close packed (dhcp) lanthanum islands grown on W(110) is

studied by scanning tunneling spectroscopy, from the bulk to the thin film limit.

Superconductivity is suppressed by the boundary conditions for the superconducting

wavefunction at the surface and W/La interface, leading to a linear decrease of the

critical temperature Tc as a function of the inverse film thickness. For thick, bulk-

like films, ∆La and Tc are 40% larger as compared to literature values of dhcp La

measured by other techniques. This finding is reconciled by examining the effects of

surface contamination as probed by modifications of the surface state, suggesting that

the large Tc originates in the superior purity of the samples investigated here.

PACS numbers: 74.78.-w, 71.20.Eh, 74.62.-c, 74.70.Ad
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Superconductivity of lanthanum revisited: enhanced critical temperature in the clean limit2

1. Introduction

Commonly, the energy gap ∆ of a superconducting film is determined in tunneling

experiments where a conducting electrode and the superconductor are separated by an

insulating layer. In early tunneling experiments, planar tunneling junctions with a thick

oxide layer [1, 2, 3] or point contacts [4] were utilized to determine the superconducting

properties of many typical superconductors. With the advancement of low temperature

scanning tunneling spectroscopy (STS) in ultra-high vacuum (UHV), it has become

possible to probe in-situ fabricated superconductors, and to determine ∆ with atomic-

scale spatial resolution [5]. Here, ∆ can be determined with a high degree of accuracy

as a result of higher sample quality resulting from in-situ preparation, and utilizing the

vacuum barrier which acts as a perfect insulator. In recent years, such investigations

have shown that seemingly well understood, elemental BCS superconductors, like Pb

or In, behave dramatically different at the thin film limit. For example, the onset of

quantum well states allows superconductivity to remain robust in the thin film limit

[6, 7], or even persist down to a single layer [7]. For other systems, like Pb-Bi alloys,

it has been shown that Tc can be engineered by modifying the Fermi wavevector kF

[8]. A thorough understanding of superconductivity at these length scales is not only

interesting from an academic point of view, but also required for possible applications of

superconductivity in nanoscale devices, mandating local probe investigations with high

spatial and energy resolution.

Although the preparation quality is especially crucial for reactive materials as,

e.g., lanthanides, this technique has not been applied to lanthanum yet, one of the

few elemental superconductors with Tc > 4 K [9]. The superconductivity of bulk La

was investigated in a number of experimental studies [4, 10, 11, 1, 2, 3, 12], including

planar tunneling [2, 1, 3] and point contact spectroscopy [4], and by theory [13, 14].

Most notably, La is an intermediate-coupling superconductor [4, 10, 2, 1, 3, 12, 14]

with a critical temperature at atmospheric pressure of T lit
c = (4.98 ± 0.04) K and

(6.04 ± 0.07) K for the stable double hexagonally close packed (dhcp) and metastable

fcc phase, respectively, and an extraordinary enhancement under compression [11, 3].

Studies about the low-dimensional properties of La are lacking.

In this letter, we report on a STS study of the superconducting properties of dhcp

La islands. We observe that ∆La and Tc of La are larger than commonly believed for

clean bulk La [4, 10, 2, 1, 3, 12, 14]. Approaching the thin film limit, namely where

the film thickness is comparable to the coherence length ξ0, we determine a monotonous

decrease of the superconducting properties, in agreement with a theoretical model that

considers the boundary condition for the superconducting wavefunction [15], ruling out

significant quantum size effects in the superconductivity. We investigated samples of

different purity and show that a reduction in Tc is correlated with increased surface

contamination and quenching of the unoccupied surface state of the La islands.
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2. Experimental Procedures

In-situ prepared La films were studied in a commercially available UHV STM [16]

at a base temperature of T = 1.2 K, unless otherwise specified, and a base pressure

p < 2×10−10 mbar. The W(110) surface was cleaned by cycles of annealing in an oxygen

atmosphere and subsequent thermal flashing [17]. La films were grown by electron

beam evaporation on a clean W(110) substrate held at room temperature. Afterwards,

each sample was annealed for 5 to 12 minutes at temperatures in the range of 700 to

800 ◦C and slowly cooled to room temperature, avoiding a rapid thermal quenching to

bypass the metastable fcc phase. Two types of La sources with different nominal purity

were used for the experiments [18]. The corresponding La films are named 1st and 2nd

generation samples in the following. STM topographs were recorded in constant-current

mode, with a sample bias voltage V = 1 V and a tunneling current in the range of I = 30

to 200 pA. STS was performed using a standard lock-in technique, adding a modulation

voltage Vmod to V . The dI/dV spectra dedicated to study superconductivity were

taken using normal metal and superconducting Nb tips [19] with Istab = 100 to 150 pA

at Vstab = −6 mV, Vmod = 0.04 to 0.07 mV. In this junction resistance range, we did

not observe any effects of Josephson supercurrents or Andreev reflections. The spectra

for the surface state were recorded with Istab = 500 pA at Vstab = +1 V, Vmod = 1 mV.

Annealing of La/W(110) leads to Stranski-Krastanov growth [20], i.e., a La wetting

layer (WL) with a thickness of one monolayer (ML) on the W(110) surface [Fig. 1(a)],

while the additional material forms flat-top dhcp La(0001) islands [Fig. 1(b)]. Height
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Figure 1. STM topographs of La/W(110). (a) Laterally differentiated topograph of

the wetting layer in between the La islands with the rhombic unit cell indicated in

yellow. (b) Islands of a 1st generation sample with heights in ML as depicted by the

numbers.

and lateral extension of the islands depend on the combination of deposition time and

rate, and annealing time and temperature. In total, islands with thicknesses d in the

range between d = 2.5 nm and d = 140 nm (8 to 460 ML) were grown, which covers a

broad range from the thin film to the bulk limit, with respect to the coherence length in
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the clean limit, ξlit
0 = 36.3 nm [12]. In order to avoid lateral size effects, we only studied

islands with a diameter � ξlit
0 .

3. Determination of the energy gap

STS on La islands reveals a symmetric superconducting gap, ∆La, around EF resulting

from the superconductivity of the probed island [Fig. 2(a)], while the WL shows no gap,

indicating a normal metal. Moreover, ∆La is reduced with decreasing d. Spectra taken

with Nb tips [Fig. 2(b)] correspondingly show a gap on the WL stemming from the tip

density of states (DOS), and a larger gap on the La islands stemming from the interplay

of the tip and sample DOS.
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Figure 2. Determination of ∆La(T, d) for La islands with different thicknesses d,

using (a) normal metal and (b) superconducting Nb tips. Experimental curves (blue

solid lines) were taken on the WL to characterize the tip DOS and with the same tip

on the La islands with indicated d. The fitted calculations are shown as red dotted

curves. (a) Experimental data: Vmod = 0.06 mV, T = 1.23 K. Fitted calculations:

Vmod,eff = 0.10 mV, ∆La = 0.79, 0.80, 0.89 meV, ΓLa = 0.25, 0.25, 0.14 meV (from top

to bottom). (b) Experimental data: Vmod = 0.07 mV, T = 1.14 K. Fitted calculations:

Vmod,eff = Vmod, ∆tip = 0.94 meV, Γtip = 0.01 meV, ∆La = 1.05 meV, ΓLa = 0.07 meV.

The curves are vertically shifted for visual clarity.

In order to precisely extract ∆La for a given d, the experimental curves were each

fitted with a numerically calculated differential conductance (Appendix A), involving a

BCS-like DOS for the sample, or for both electrodes in the case of Nb tips,

Nsc(E,Γ) = Nn <

(
E − iΓ√

(E − iΓ)2 −∆2

)
. (1)

Here, Nn is the DOS of the electrode in its normal metal state which is assumed to

be constant, E is the energy, ∆ is the familiar energy gap from BCS theory, and Γ is a

broadening parameter which was originally introduced to describe the finite lifetimes of

quasiparticles in the tunneling process [21]. The fitted calculations (Appendix A) yield

∆La and ΓLa as free fit parameters, while ∆Nb and ΓNb were determined from the WL

spectra taken with the same micro-tip. The excellent fit quality [Fig. 2(a,b)] permits an
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accurate determination of these quantities, resulting in values of up to ∆La = 1.05 meV

and ΓLa ≈ 0.1 to 0.6 meV. There is no strong lateral variation of superconductivity on

the islands, at least for distances ≥ ξlit
0 from the islands’ edges (Appendix B). Hence,

we conclude that ∆La depends only on d and T . The obtained ∆La(T, d) is shown in

Fig. 3(a) for both sample generations. Below, we first focus on the results from the

cleaner 1st generation samples, and discuss the effect of impurities on superconductivity

later. Going from the bulk limit d � ξlit
0 to the thin film limit, the values of ∆La(T, d)

show a linear decrease as a function of inverse thickness with no obvious saturation

above d = ξlit
0 .

4. Determination of the critical temperature

Tc(d) is determined from the experimental ∆La(T, d) using BCS theory (Appendix C).

In the La bulk limit, the relation between the zero-temperature energy gap ∆La(0, d)

and Tc(d) was shown to equal 2∆La(0, d)/kBTc(d) = 3.75± 0.02 [2, 1, 3, 12]. We assume

the same constant value for the whole range of La thicknesses studied here. In fact, the

only two effects which could alter its value for decreasing d are (i) phonon softening [22],

which would emerge as a shift of phonon modes in experimental dI/dV -curves [23], and

(ii) electronic quantum size effects, which would appear as discrete states in the higher

voltage range of the spectra. There are no clear indications for such features (Fig. 2,

Fig. 4). Therefore, both effects can be ruled out, and should only emerge in very thin

films of up to a couple of monolayers (5 to 10 ML in Pb [23]). For our thinnest films,

where Tc becomes comparable to T , the finite experimental temperature is considered

by calculating ∆La(0, d) from ∆La(T, d) by a numerical integration according to BCS

theory (Appendix C).

The obtained Tc(d) shows a linear behavior in 1/d with highest values of Tc =

6.5 K for the thickest islands [Fig. 3(b)]. Note that Tc(d) calculated from the 4.3 K

experimental data roughly coincides with Tc(d) calculated from the 1.2 K data, justifying

the determination of Tc(d) via BCS theory.

5. Thickness dependence and comparison to bulk values

In order to explain the observed thickness dependence of Tc, at first the very general

relation Tc(d) ∝ (1/d)α is fitted to the experimental data [dashed line in Fig. 3(b)]. The

resulting fit parameter, α = 1.29 ± 0.46, is close to α = 1. This strongly suggests that

the experimental data can be explained by the so-called Simonin model [15], where the

boundary conditions for the superconducting wavefunction, imposed by the interface to

the W substrate and the surface, corresponds to an additional term in the Ginzburg-

Landau free energy. This leads to a reduction in Tc for thin superconducting films,

resulting in

Tc(d) = Tc,bulk

(
1− dc

d

)
. (2)
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Figure 3. Dependence of (a) ∆La(T, d) and (b) Tc(d) on the inverse film thickness

1/d. Sample generations and measurement temperatures are indicated. The error bars

are due to uncertainties in the measured film thickness and in the fit parameters. The

literature bulk values ξlit
0 , ∆lit

La, and T lit
c are indicated by vertical and horizontal lines,

respectively, in (a,b). Dashed and solid curves in (b) show power law fits and linear

fits according to the Simonin model (Eq. 2), respectively.

Here, the critical thickness dc can be interpreted as a threshold thickness, which is

required for a La film to develop superconductivity, if the Simonin model holds for

such very thin films. Keeping Tc,bulk and dc as free parameters, Eq. 2 is fitted to

the experimental data [black solid line in Fig. 3(b)]. The fitted value for the critical

thickness is dc = (7.38± 1.04) nm (about 25 ML in the [0001] direction). Note that,

although no superconducting gap is observed for d ≤ 10 nm under our experimental

conditions, it cannot be ruled out that these islands have a finite Tc which is below the

measurement temperature of 1.2 K. An expected value for dc can be determined via

dlit
c = 2/[kTFN(0)V ] [15] from literature values for the inverse Thomas-Fermi screening

length kTF = (1.543±0.036) nm−1, and for the product of the electronic density of states

at the Fermi level and the electron-phonon coupling potential N(0)V = (0.286± 0.006)

[10, 12, 14], giving dlit
c = (4.54±0.09) nm, which is close to the experimental result. The

relatively large value of dc, compared to other superconducting materials such as Pb,

thus originates from the comparatively small Fermi velocity [12] of La.
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The value for the bulk critical temperature extracted from the fit to the Simonin

model is Tc,bulk = (7.10± 0.38) K. The aforementioned relation 2∆La(0, d)/kBTc(d)

then yields a bulk energy gap of ∆La,bulk(0) = (1.15 ± 0.06) meV, which coincides

with the value extrapolated from Fig. 3(a). As a main result of this work, both

Tc,bulk and ∆La,bulk(0) are almost 40% higher in comparison to reported bulk values

[4, 10, 2, 1, 3, 12, 13, 14]. This result is surprising, since in previous experimental

studies of the thickness-dependent Tc(d) in other materials, which also revealed a linear

dependence in agreement with the Simonin model, the extrapolated values usually are

in agreement with the respective bulk values [8, 24, 25].

In the following, we discuss the origin of the large Tc value. The effect of strain

on the La islands can be neglected in the thickness dependency Tc(d), even though

La is a relatively soft metal: For Gd/W(110), which has a similar lattice constant to

La/W(110), only the monolayer and bilayer have slightly enhanced lattice constants of

2% and 0.3% [26], while thicker films are already relaxed to the bulk lattice parameter.

Moreover, the residual strain is tensile in nature and would lead to a reduction in Tc
[2, 3]. Therefore, we can rule out that the experimentally observed increase in ∆La,bulk(0)

and Tc,bulk is related to strain effects.

6. Effect of purity on ∆ and Tc

Since impurities are known to play a crucial role for superconductivity, we finally

investigate the effect of purity of the sample on ∆La(T, d) and Tc(d) by an investigation

of the 2nd generation samples, where STM topographs revealed residual surface

contamination. The surface contamination is quantified by the intensity and width

of the dz2-like surface state which forms on the lanthanide (0001) surfaces [27, 20] and is

very sensitive to adsorbates [27, 20]. The spectra in Fig. 4(a) indicate a well developed

surface state by a strong resonance at V ≈ 0.1 V in the 1st generation samples, while the

surface state is partly quenched in the 2nd generation samples. This finding is supported

by a quantitative analysis (Appendix D) of the full width at half maximum (FWHM) Γss

and intensities p0 of the resonances measured on all investigated samples [Fig. 4(b)]. For

the 1st generation samples, Γss has a value comparable to or even lower than the reported

intrinsic lifetime broadening due to electron-electron and electron-phonon scattering for

very clean samples [20] (Appendix D). In contrast, on the 2nd generation samples, the

surface state lifetime is further reduced by defect scattering as revealed by a roughly

doubled Γss. We can therefore conclude that the surface purity of the 2nd generation

samples is strongly reduced with respect to that of the 1st generation samples.

As shown in Fig. 3(a,b), the reduced purity of the 2nd generation samples is

correlated with overall reduced values of ∆La(T, d) and Tc(d). Eq. 2 fitted to this

experimental data results in T ∗c,bulk = (5.73± 0.62) K and d∗c = (10.82± 3.36) nm [red

straight line in Fig. 3(b)]. Since d∗c enters the boundary condition for the suppression of

the superconducting order parameter [15], the enhanced value of d∗c indicates a stronger

decay of the superconducting order parameter at the dirtier surface boundary of the
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Figure 4. (a) STS spectra indicating the dz2 -like surface state that forms on La(0001).

The curves are normalized such that the differential conductance at Vstab = +1 V

coincides. The negative dI/dV values originate from an interplay between the strongly

peaked sample DOS and a tip DOS with negative slope [20]. (b) Quantitative analysis

of FWHM Γss and intensity p0 of the surface state extracted from Lorentzian fits to

STS spectra like shown in (a) (Appendix D).

2nd generation samples. These results suggest that the superior sample quality of the

1st generation samples with respect to previous studies [1, 2, 3, 4, 10, 12, 11, 14, 13] is

responsible for the enhanced values of ∆La,bulk(0) and Tc,bulk of these samples. This result

is astonishing: While the surface state and the observed contamination are localized in

the topmost atomic layer of the La islands, and thus, their superconductivity is expected

to be influenced by the surface only within a region of ξlit
0 = 36.3 nm, we observe a

reduction of ∆La,bulk(0) and Tc,bulk even for the thickest islands with d = 140 nm.

However, it is likely that not only the surface, but also the interior and the W-La

interface of the 2nd generation La islands are dirtier than for the 1st generation samples.

This might explain the correlation between Tc and surface contamination for the thick

islands with d > ξlit
0 , where the surface is not expected to play a crucial role for the

superconducting properties.
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7. Summary

In summary, our observations reveal that the intrinsic bulk energy gap and critical

temperature of dhcp La are 40% larger as compared to the values cited in the literature.

In addition, we quantitatively determined the thickness dependence of ∆La and Tc, which

is in good agreement with a theoretical model that considers the boundary conditions

for the superconducting wavefunction. We find that superconductivity does not persist

below a critical thickness of 25 ML. We consider the effects of sample purity, as correlated

with modifications to the unoccupied surface state of La, and find, regardless of the

thickness, that superconductivity is reduced at increased surface contamination. Our

results suggest, that a superior purity of the samples investigated here explains why

we observe an enhancement of Tc as compared to previous reports. This highlights

the challenge in the investigation of the superconducting properties of the notoriously

reactive lanthanides.
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Appendix A: Numerical calculation of the differential conductance

The energy gap of lanthanum was investigated by STS with superconducting Nb tips and

normal metal tungsten and PtIr tips. A lock-in technique gives direct access to dI/dV .

There, the finite modulation voltage Vmod (RMS value) limits the energy resolution and

broadens the coherence peaks, which adds to the usual thermal broadening. In order to

determine the superconducting energy gap ∆ and lifetime broadening parameter Γ, the

differential conductance is calculated numerically in analogy to the working principle of

the lock-in amplifier [19]:

dI

dV
(V ) ∝

∫ +π/2

−π/2
sin(α) I

(
V +
√

2Vmod sin(α), T
)

dα . (3)

In this formula, I is the tunneling current, defined as

I(V, T ) ∝
∫ +∞

−∞
N1(E)N2(E + eV ) [f(E + eV, T )− f(E, T )] dE . (4)

N1(E) and N2(E) are the densities of states (DOS) of the two tunneling electrodes,

and f(E, T ) is the Fermi function.

In the simplest case, where the tunneling junction consists of a superconducting

and a normal metal electrode (i.e., superconducting La island and normal metal tip or

superconducting tip and normal metal wetting layer), the DOS of the superconducting

electrode, defined by Eq. 1 of the main paper, is used as N1(E). Furthermore, we assume
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that the DOS N2(E) of the normal metal electrode is constant on the relevant scale of

∆1. In that case, a fitting of Eq. 3 to the experimental data, with only ∆1 and Γ1 as

free parameters, yields these quantities with good accuracy.

In STS measurements with two superconducting electrodes (i.e., superconducting

La island and superconducting tip), N1(E) is the same as before. We assume a similar

DOS for the second superconducting electrode, N2(E), with its normal metal DOS Nn,2.

In addition, we consider the parameters ∆2, Γ2, and the applied voltage:

N2(E+eV ) = Nn,2 <

 E + eV +
√

2 eVmod sin(α)− iΓ2√[
E + eV +

√
2 eVmod sin(α)− iΓ2

]2 −∆2
2

 (5)

As ∆1 and Γ1 are already known from the characterization experiment we performed

for each tip on the wetting layer, fitting Eq. 3 to the experimental data yields ∆2 and

Γ2 with good accuracy.

While most STS studies of superconductors fit experimental dI/dV -curves by using

only Eq. 4, the approach introduced by Eq. 3 naturally considers a finite modulation

voltage. Moreover, a possible electronic noise added to the bias voltage can be described

by this approach when using an increased effective modulation voltage Vmod,eff ≥ Vmod.

This enables to decouple several effects that broaden the dI/dV -curves, and to determine

the “intrinsic” lifetime broadening parameter Γ for tip and sample.
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Figure 5. Investigation of a possible lateral variation of superconductivity. (a) STM

topograph (laterally differentiated image, I = 50 pA, V = 950 mV, T = 1.16 K)

of a 137 nm thick lanthanum island taken with a superconducting Nb tip (∆tip =

0.770 meV, Γtip = 0.020 meV). (b) dI/dV -curves taken at increasing separations from

the rim, as depicted by the colored dots in (a) (Istab = 100 pA, Vstab = −6 mV,

Vmod = 0.080 mV). The spectra are each shifted by 5.5 a.u. for better clarity.

Numerical calculations (dotted curves), obtained with T = 1.16 K and Vmod,eff = Vmod,

reveal the very same parameters, ∆La = 0.875 meV and ΓLa = 0.025 meV, for all

experimental dI/dV -curves. Slight deviations at positive voltages can be ascribed to an

insufficient stabilization of the tunneling junction. The dips in dI/dV at voltages above

the coherence peaks originate from the Nb tip and are not related to the lanthanum

island.
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Appendix B: Exclusion of a lateral variation of the superconducting

properties

A possible lateral variation of the superconducting properties of lanthanum islands is

inspected in a control experiment on a particular 137 nm thick island [Fig. 5(a,b)].

dI/dV -spectra were taken at different positions on the island [colored dots in Fig. 5(a)].

Even the blue point is 58 nm away from the rim, which is clearly above the coherence

length. The dI/dV -spectra do not show any lateral variation on the relevant energy

scale up to |eV | = 6 meV [Fig. 5(b)]. Hence, the superconducting properties of the

lanthanum islands, ∆La and ΓLa, are only a function of thickness d and temperature T .

Appendix C: Determination of the critical temperature

In the main paper, the following relation between Tc(d) and ∆La(0, d) is given [2, 1, 3, 12]:

2∆La(0, d)

kBTc(d)
= 3.75± 0.02 (6)

In order to obtain Tc(d) from the experimental ∆La(T, d), an understanding of the

temperature dependence of ∆La(T, d) is required. For the intermediate-coupling

superconductor lanthanum [10, 12, 14], the relations between ∆La(T, d) and Tc(d) are

given by

kBTc(d) = 1.065 · ~ωD(d) · e−1/[N(0)V ] (7)

1

N(0)V
=

∫ ~ωD(d)

0

tanh 1
2
β
√
ξ2 + ∆La(T, d)2√

ξ2 + ∆La(T, d)2
dξ =

1

0.286± 0.006
. (8)

Here, β = 1/kBT . Eq. 6 is used to determine Tc(d) as a function of ∆La(0, d) [dashed

line in Fig. 6]. The dependence of Tc(d) as a function of ∆La(T, d) is calculated by a

numerical integration of Eq. 8 using Eq. 7 in order to relate ~ωD(d) to Tc(d).
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Figure 6. Derivation of Tc(d) from the experimental values of ∆La(T, d), for T = 0,

T = 1.2 K, and T = 4.3 K.

In Fig. 6, Tc(d) is shown as a function of ∆La(1.2 K, d) (green curve) and

∆La(4.3 K, d) (blue curve). Concerning T = 1.2 K, in the range of the relevant data,
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∆La(1.2 K, d) = 400 to 1000 µeV, there is basically no deviation between ∆La(0, d) and

∆La(T, d), hence Tc(d) is immediately given by 2∆La(T, d)/kBTc(d) = 3.75 ± 0.02. In

contrast, T = 4.3 K leads to a significant deviation between ∆La(0, d) and ∆La(T, d).

The calculated relations are used to determine Tc(d) for all measured ∆La(T, d), as

shown in the main paper.

Appendix D: Contamination-induced quenching of the surface state

As described in the main text, the dz2-like surface state which forms on La(0001) is

sensitive to surface contamination (Fig. 4). In the following, the reduction of intensity

and enhancement of broadening is quantitatively determined from the experimental STS

curves of the two sample generations. This enables to relate these values to the surface

state lifetime and quality of La films for comparison with previous experimental studies

[20]. In order to describe the differential conductance dI/dV (V ) analytically, a simple

model in analogy to [20] is introduced.

Neglecting any voltage dependence of the transmission coefficient T (E, V ), and

assuming a constant electronic density of states of the tip, an expression for dI/dV is

given as

dI

dV
(V ) ∝

∫
Ns(E) T (E) f ′(E − eV, T ) dE . (9)

Here, Ns(E) is the density of states of the sample, f ′(E − eV, T ) denotes the

differentiation of the Fermi function with respect to V . The transmission coefficient

T (E) is rather constant. The (negative) effective mass of the La(0001) surface state

was determined by ab initio calculations as |meff | > 2me [20]. Here, this rather weak

dispersion is neglected completely, and Ns(E) T (E) is first approximated by a δ-function

δ(E − E0), where E0 equals the band maximum at k = 0.

Now, the finite lifetime of the surface state τss is taken into account. The lifetime

broadening Γss = ~/τss consists of electron-electron (Γe−ess ), electron-phonon (Γe−ph
ss ), and

defect scattering (Γdef
ss ), that all add up to the overall broadening Γss = Γe−ess +Γe−ph

ss +Γdef
ss .

The energy dependence of these different scattering channels is neglected for simplicity.

Therefore, the δ-function needs to be replaced by a Lorentzian [20], which leads to

dI

dV
(V ) =

∫
p0 Γss

(E − E0)2 + (Γss/2)2
f ′(E − eV ) dE . (10)

p0 is a factor of proportionality, which is called intensity in the following. The width

(FWHM) of the differentiated Fermi function f ′(E−eV, T ) is about 3.5 kBT = 0.36 meV

at T = 1.2 K, which is orders of magnitude smaller compared to the energy scale of the

surface state. Therefore, f ′(E − eV, T ) is replaced by a δ-function δ(E − eV ), resulting

in
dI

dV
(V ) =

p0 Γss e

(eV − eV0)2 + (Γss/2)2
. (11)

When fitting this formula to the experimental dI/dV -curves, there are three free

parameters: intensity p0, peak maximum eV0 = E0, and width (FWHM) Γss. Before



Superconductivity of lanthanum revisited: enhanced critical temperature in the clean limit13

fitting, the individual STS curves were normalized to have the same differential

conductance at V = +1 V. In addition, a constant offset was subtracted, which reflects

tunneling into bulk states. As depicted by the fitting result for two exemplary measured

curves in Fig. 7(a,b), this procedure leads to a good fit of the experimental data.
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Figure 7. Characterization of the surface state for the two sample generations.

(a,b) Fits of a Lorentzian (Eq. 11) to experimental dI/dV -curves. (a) dI/dV -curve

(dots) taken on a 34 nm thick La island of the 1st sample generation. Fit results

(straight line): p0 = (0.068± 0.006) A, V0 = (102.2±1.4) mV, Γss = (40.8±4.9) meV.

(b) dI/dV -curve (dots) on a 129 nm thick island of the 2nd sample generation.

Fit results (straight line): p0 = (0.053 ± 0.001) A, V0 = (96.2± 0.5) mV, Γss =

(80.8 ± 1.9) meV. (c,d) Compilation of fit results including additional measurements.

Data from 1st (2nd) generation samples are marked by green (red) dots. The particular

results shown in (a,b) are marked by colored circles. (c) Width (FWHM) Γss vs. island

thickness. (d) Γss vs. intensity p0. (a-d) Tunneling parameters: Istab = 500 pA at

Vstab = +1 V, Vmod = 1 mV, T = 1.2 K.

The fit results for all measured dI/dV -spectra are shown in Fig 7(c,d) color-coded

according to the sample generation. Γss is found to be almost independent of the island

thickness. Even the thinnest films have a well-pronounced surface state, which is in

agreement with previous studies [20]. The 1st sample generation always exhibits a very

narrow surface state peak with a maximum at V0 = +(101.7±1.2) mV and a width given

by Γss = (45.4± 1.5) meV, corresponding to a lifetime of τss = ~/Γss = (14.5± 0.5) fs.

In a previous analysis of the width of the experimental surface state peak, which even

considered energy-dependent lifetime broadening, a value of Γlit
ss = (49 ± 10) meV

was reported [20]. In comparison with the result reported here for the 1st sample

generation, this implies that no additional energy broadening arises due to impurity-

induced scattering. It is therefore assumed that the defect-induced broadening for this

very clean sample generation can be completely neglected, and hence Γss = Γe−e+Γe−ph
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is the “intrinsic” lifetime broadening. In summary, this shows that La(0001) surfaces of

the 1st sample generation are of the same or even better quality compared to previous

studies [20].

The STS spectra taken on the La islands of the 2nd sample generation exhibit surface

state peaks with a reduced intensity and a larger width [Fig. 7(b-d)]. Therefore, the

modified Γ∗ss = Γe−e+Γe−ph+Γ∗def must be affected by a defect-induced contribution Γ∗def .

This quantity is about twice as large as the “intrinsic” broadening Γss. The influence of

surface contamination on superconductivity is analyzed in the main part of the paper.
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