53,374 research outputs found

    Construction of a surface air temperature series for Qingdao in China for the period 1899 to 2014

    No full text
    Abstract. We present a homogenized surface air temperature (SAT) time series at 2 m height for the city of Qingdao in China from 1899 to 2014. This series is derived from three data sources: newly digitized and homogenized observations of the German National Meteorological Service from 1899 to 1913, homogenized observation data of the China Meteorological Administration (CMA) from 1961 to 2014 and a gridded dataset of Willmott and Matsuura (2012) in Delaware to fill the gap from 1914 to 1960. Based on this new series, long-term trends are described. The SAT in Qingdao has a significant warming trend of 0.11 ± 0.03 °C decade−1 during 1899–2014. The coldest period occurred during 1909–1918 and the warmest period occurred during 1999–2008. For the seasonal mean SAT, the most significant warming can be found in spring, followed by winter. The homogenized time series of Qingdao is provided and archived by the Deutscher Wetterdienst (DWD) web page under overseas stations of the Deutsche Seewarte (http://www.dwd.de/EN/ourservices/overseas_stations/ueberseedoku/doi_qingdao.html) in ASCII format. Users can also freely obtain a short description of the data at https://doi.org/https://dx.doi.org/10.5676/DWD/Qing_v1 And the data can be downloaded at http://dwd.de/EN/ourservices/overseas_stations/ueberseedoku/data_qingdao.txt

    The structural, mechanical, electronic, optical and thermodynamic properties of t-X3_{3}As4_{4} (X == Si, Ge and Sn) by first-principles calculations

    Full text link
    The structural, mechanical, electronic, optical and thermodynamic properties of the t-X3_{\mathrm{3}}As4_{\mathrm{4}} (X == Si, Ge and Sn) with tetragonal structure have been investigated by first principles calculations. Our calculated results show that these compounds are mechanically and dynamically stable. By the study of elastic anisotropy, it is found that the anisotropic of the t-Sn3_{\mathrm{3}}As4_{\mathrm{4}} is stronger than that of t-Si3_{\mathrm{3}}As4_{\mathrm{4}} and t-Ge3_{\mathrm{3}}As4_{\mathrm{4}}. The band structures and density of states show that the t-X3_{\mathrm{3}}As4_{\mathrm{4}} (Si, Ge and Sn) are semiconductors with narrow band gaps. Based on the analyses of electron density difference, in t-X3_{\mathrm{3}}As4_{\mathrm{4}} As atoms get electrons, X atoms lose electrons. The calculated static dielectric constants, ε1(0)\varepsilon_{1} (0), are 15.5, 20.0 and 15.1 eV for t-X3_{\mathrm{3}}As4_{\mathrm{4}} (X == Si, Ge and Sn), respectively. The Dulong-Petit limit of t-X3_{\mathrm{3}}As4_{\mathrm{4}} is about 10 J mol1^{\mathrm{-1}}K1^{\mathrm{-1}}. The thermodynamic stability successively decreases from t-Si3_{\mathrm{3}}As4_{\mathrm{4}} to t-Ge3_{\mathrm{3}}As4_{\mathrm{4}} to t-Sn3_{\mathrm{3}}As4_{\mathrm{4}}.Comment: 14 pages, 10 figures, 6 table

    Is the f0(600)f_0(600) meson a dynamically generated resonance? -- a lesson learned from the O(N) model and beyond

    Get PDF
    O(N) linear σ\sigma model is solvable in the large NN limit and hence provides a useful theoretical laboratory to test various unitarization approximations. We find that the large NcN_c limit and the mσm_\sigma\to \infty limit do not commute. In order to get the correct large NcN_c spectrum one has to firstly take the large NcN_c limit. We argue that the f0(600)f_0(600) meson may not be described as generated dynamically. On the contrary, it is most appropriately described at the same level as the pions, i.e, both appear explicitly in the effective lagrangian. Actually it is very likely the σ\sigma meson responsible for the spontaneous chiral symmetry breaking in a lagrangian with linearly realized chiral symmetry.Comment: 15 pages, 3 figurs; references added; discussions slightly modified; revised version accepted by IJMP
    corecore