752 research outputs found

    Minimizing Rational Functions by Exact Jacobian SDP Relaxation Applicable to Finite Singularities

    Full text link
    This paper considers the optimization problem of minimizing a rational function. We reformulate this problem as polynomial optimization by the technique of homogenization. These two problems are shown to be equivalent under some generic conditions. The exact Jacobian SDP relaxation method proposed by Nie is used to solve the resulting polynomial optimization. We also prove that the assumption of nonsingularity in Nie's method can be weakened as the finiteness of singularities. Some numerical examples are given to illustrate the efficiency of our method.Comment: 23 page

    Universality for the largest eigenvalue of sample covariance matrices with general population

    Full text link
    This paper is aimed at deriving the universality of the largest eigenvalue of a class of high-dimensional real or complex sample covariance matrices of the form WN=Σ1/2XXΣ1/2\mathcal{W}_N=\Sigma^{1/2}XX^*\Sigma ^{1/2}. Here, X=(xij)M,NX=(x_{ij})_{M,N} is an M×NM\times N random matrix with independent entries xij,1iM,1jNx_{ij},1\leq i\leq M,1\leq j\leq N such that Exij=0\mathbb{E}x_{ij}=0, Exij2=1/N\mathbb{E}|x_{ij}|^2=1/N. On dimensionality, we assume that M=M(N)M=M(N) and N/Md(0,)N/M\rightarrow d\in(0,\infty) as NN\rightarrow\infty. For a class of general deterministic positive-definite M×MM\times M matrices Σ\Sigma, under some additional assumptions on the distribution of xijx_{ij}'s, we show that the limiting behavior of the largest eigenvalue of WN\mathcal{W}_N is universal, via pursuing a Green function comparison strategy raised in [Probab. Theory Related Fields 154 (2012) 341-407, Adv. Math. 229 (2012) 1435-1515] by Erd\H{o}s, Yau and Yin for Wigner matrices and extended by Pillai and Yin [Ann. Appl. Probab. 24 (2014) 935-1001] to sample covariance matrices in the null case (Σ=I\Sigma=I). Consequently, in the standard complex case (Exij2=0\mathbb{E}x_{ij}^2=0), combing this universality property and the results known for Gaussian matrices obtained by El Karoui in [Ann. Probab. 35 (2007) 663-714] (nonsingular case) and Onatski in [Ann. Appl. Probab. 18 (2008) 470-490] (singular case), we show that after an appropriate normalization the largest eigenvalue of WN\mathcal{W}_N converges weakly to the type 2 Tracy-Widom distribution TW2\mathrm{TW}_2. Moreover, in the real case, we show that when Σ\Sigma is spiked with a fixed number of subcritical spikes, the type 1 Tracy-Widom limit TW1\mathrm{TW}_1 holds for the normalized largest eigenvalue of WN\mathcal {W}_N, which extends a result of F\'{e}ral and P\'{e}ch\'{e} in [J. Math. Phys. 50 (2009) 073302] to the scenario of nondiagonal Σ\Sigma and more generally distributed XX.Comment: Published in at http://dx.doi.org/10.1214/14-AOS1281 the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Universality for a global property of the eigenvectors of Wigner matrices

    Full text link
    Let MnM_n be an n×nn\times n real (resp. complex) Wigner matrix and UnΛnUnU_n\Lambda_n U_n^* be its spectral decomposition. Set (y1,y2...,yn)T=Unx(y_1,y_2...,y_n)^T=U_n^*x, where x=(x1,x2,...,x=(x_1,x_2,..., xn)Tx_n)^T is a real (resp. complex) unit vector. Under the assumption that the elements of MnM_n have 4 matching moments with those of GOE (resp. GUE), we show that the process Xn(t)=βn2i=1nt(yi21n)X_n(t)=\sqrt{\frac{\beta n}{2}}\sum_{i=1}^{\lfloor nt\rfloor}(|y_i|^2-\frac1n) converges weakly to the Brownian bridge for any x\mathbf{x} such that x0||x||_\infty\rightarrow 0 as nn\rightarrow \infty, where β=1\beta=1 for the real case and β=2\beta=2 for the complex case. Such a result indicates that the othorgonal (resp. unitary) matrices with columns being the eigenvectors of Wigner matrices are asymptotically Haar distributed on the orthorgonal (resp. unitary) group from a certain perspective.Comment: typos correcte

    Tracy-Widom law for the extreme eigenvalues of sample correlation matrices

    Full text link
    Let the sample correlation matrix be W=YYTW=YY^T, where Y=(yij)p,nY=(y_{ij})_{p,n} with yij=xij/j=1nxij2y_{ij}=x_{ij}/\sqrt{\sum_{j=1}^nx_{ij}^2}. We assume {xij:1ip,1jn}\{x_{ij}: 1\leq i\leq p, 1\leq j\leq n\} to be a collection of independent symmetric distributed random variables with sub-exponential tails. Moreover, for any ii, we assume xij,1jnx_{ij}, 1\leq j\leq n to be identically distributed. We assume 0<p<n0<p<n and p/nyp/n\rightarrow y with some y(0,1)y\in(0,1) as p,np,n\rightarrow\infty. In this paper, we provide the Tracy-Widom law (TW1TW_1) for both the largest and smallest eigenvalues of WW. If xijx_{ij} are i.i.d. standard normal, we can derive the TW1TW_1 for both the largest and smallest eigenvalues of the matrix R=RRT\mathcal{R}=RR^T, where R=(rij)p,nR=(r_{ij})_{p,n} with rij=(xijxˉi)/j=1n(xijxˉi)2r_{ij}=(x_{ij}-\bar x_i)/\sqrt{\sum_{j=1}^n(x_{ij}-\bar x_i)^2}, xˉi=n1j=1nxij\bar x_i=n^{-1}\sum_{j=1}^nx_{ij}.Comment: 35 pages, a major revisio

    Status of DEMO HCPB Breeding Blanket in Europe

    Get PDF
    corecore