540 research outputs found

    Photoluminescence study on coarsening of self-assembled InAlAs quantum dots on GaAs (001)

    Get PDF
    Red-emission at similar to 640 nm from self-assembled In0.55Al0.45As/Al0.5Ga0.5As quantum dots grown on GaAs substrate by molecular beam epitaxy (MBE) has been demonstrated. We obtained a double-peak structure of photoluminescence (PL) spectra from quantum dots. An atomic force micrograph (AFM) image for uncapped sample also shows a bimodal distribution of dot sizes. From the temperature and excitation intensity dependence of PL spectra, we found that the double-peak structure of PL spectra from quantum dots was strongly correlated to the two predominant quantum dot families. Taking into account quantum-size effect on the peak energy, we propose that the high (low) energy peak results from a smaller (larger) dot family, and this result is identical with the statistical distribution of dot lateral size from the AFM image

    GdxSi grown with mass-analyzed low energy dual ion beam epitaxy technique

    Get PDF
    Semiconducting gadolinium silicide GdxSi samples were prepared by mass-analyzed low-energy dual ion beam epitaxy technique. Auger electron spectroscopy depth profiles indicate that the gadolinium ions are implanted into the single-crystal silicon substrate and formed 20 nm thick GdxSi film. X-ray double-crystal diffraction measurement shows that there is no new phase formed. The XPS spectra show that one type of silicon peaks whose binding energy is between that of silicide and silicon dioxide, and the gadolinium peak of binding energy is between that of metal Gd and Gd2O3. All of these results indicate that an amorphous semiconductor is formed. (C) 2002 Elsevier Science B.V. All rights reserved

    NOA1 Functions in a Temperature-Dependent Manner to Regulate Chlorophyll Biosynthesis and Rubisco Formation in Rice

    Get PDF
    NITRIC OXIDE-ASSOCIATED1 (NOA1) encodes a circularly permuted GTPase (cGTPase) known to be essential for ribosome assembly in plants. While the reduced chlorophyll and Rubisco phenotypes were formerly noticed in both NOA1-supressed rice and Arabidopsis, a detailed insight is still necessary. In this study, by using RNAi transgenic rice, we further demonstrate that NOA1 functions in a temperature-dependent manner to regulate chlorophyll and Rubisco levels. When plants were grown at 30°C, the chlorophyll and Rubisco levels in OsNOA1-silenced plants were only slightly lower than those in WT. However, at 22°C, the silenced plants accumulated far less chlorophyll and Rubisco than WT. It was further revealed that the regulation of chlorophyll and Rubisco occurs at the anabolic level. Etiolated WT seedlings restored chlorophyll and Rubisco accumulations readily once returned to light, at either 30°C or 15°C. Etiolated OsNOA1-silenced plants accumulated chlorophyll and Rubisco to normal levels only at 30°C, and lost this ability at low temperature. On the other hand, de-etiolated OsNOA1-silenced seedlings maintained similar levels of chlorophyll and Rubisco as WT, even after being shifted to 15°C for various times. Further expression analyses identified several candidate genes, including OsPorA (NADPH: protochlorophyllide oxidoreductase A), OsrbcL (Rubisco large subunit), OsRALyase (Ribosomal RNA apurinic site specific lyase) and OsPuf4 (RNA-binding protein of the Puf family), which may be involved in OsNOA1-regulated chlorophyll biosynthesis and Rubisco formation. Overall, our results suggest OsNOA1 functions in a temperature-dependent manner to regulate chlorophyll biosynthesis, Rubisco formation and plastid development in rice

    Tubulin Tyrosination Is Required for the Proper Organization and Pathfinding of the Growth Cone

    Get PDF
    International audienceBACKGROUND: During development, neuronal growth cones integrate diffusible and contact guidance cues that are conveyed to both actin and microtubule (MT) cytoskeletons and ensure axon outgrowth and pathfinding. Although several post-translational modifications of tubulin have been identified and despite their strong conservation among species, their physiological roles during development, especially in the nervous sytem, are still poorly understood. METHODOLOGY/FINDINGS: Here, we have dissected the role of a post-translational modification of the last amino acid of the alpha-tubulin on axonal growth by analyzing the phenotype of precerebellar neurons in Tubulin tyrosin ligase knock-out mice (TTL(-/-)) through in vivo, ex vivo and in vitro analyses. TTL(-/-) neurons are devoid of tyrosinated tubulin. Their pathway shows defects in vivo, ex vivo, in hindbrains open-book preparations or in vitro, in a collagen matrix. Their axons still orient toward tropic cues, but they emit supernumerary branches and their growth cones are enlarged and exhibit an emission of mis-oriented filopodia. Further analysis of the TTL(-/-) growth cone intracellular organization also reveals that the respective localization of actin and MT filaments is disturbed, with a decrease in the distal accumulation of Myosin IIB, as well as a concomitant Rac1 over-activation in the hindbrain. Pharmacological inhibition of Rac1 over-activation in TTL(-/-) neurons can rescue Myosin IIB localization. CONCLUSIONS/SIGNIFICANCE: In the growth cone, we propose that tubulin tyrosination takes part in the relative arrangement of actin and MT cytoskeletons, in the regulation of small GTPases activity, and consequently, in the proper morphogenesis, organization and pathfinding of the growth cone during development

    Targeted gene therapy of nasopharyngeal cancer in vitro and in vivo by enhanced thymidine kinase expression driven by human TERT promoter and CMV enhancer

    Get PDF
    <p>Abstract</p> <p>Background/Aim</p> <p>To explore the therapeutic effects of thymidine kinase (TK) expressed by enhanced vector pGL3-basic- hTERTp-TK-EGFP-CMV driven by human telomerase reverse transcriptase promoter (hTERTp) as well as cytomegalovirus immediate early promoter enhancer (CMV).</p> <p>Materials/Methods</p> <p>Enhanced TK-EGFP expression was confirmed by fluorescent microscopy, real time PCR and telomerase activity. Its effects were examined by survival of tumor cells NPC 5-8F and MCF-7, index of xenograft implanted in nude mice and histology.</p> <p>Results</p> <p>Compared with non-enhanced vector pGL3-basic-TK-hTERTp-EGFP, TK expressed by the enhanced vector significantly decreased NPC 5-8F and MCF-7 cell survival rates after ganciclovir (GCV) treatment (p < 0.001) and tumor progress in nude mice with NPC xenograft and treated with GCV, without obvious toxicity to mouse liver and kidney.</p> <p>Conclusion</p> <p>The enhanced TK expression vector driven by hTERTp with CMV enhancer has brighter clinical potentials in nasopharyngeal carcinoma therapy than the non-enhanced vector.</p

    Mechanically-Controlled Binary Conductance Switching of a Single-Molecule Junction

    Full text link
    Molecular-scale components are expected to be central to nanoscale electronic devices. While molecular-scale switching has been reported in atomic quantum point contacts, single-molecule junctions provide the additional flexibility of tuning the on/off conductance states through molecular design. Thus far, switching in single-molecule junctions has been attributed to changes in the conformation or charge state of the molecule. Here, we demonstrate reversible binary switching in a single-molecule junction by mechanical control of the metal-molecule contact geometry. We show that 4,4'-bipyridine-gold single-molecule junctions can be reversibly switched between two conductance states through repeated junction elongation and compression. Using first-principles calculations, we attribute the different measured conductance states to distinct contact geometries at the flexible but stable N-Au bond: conductance is low when the N-Au bond is perpendicular to the conducting pi-system, and high otherwise. This switching mechanism, inherent to the pyridine-gold link, could form the basis of a new class of mechanically-activated single-molecule switches

    Expression and regulation of HIF-1alpha in macrophages under inflammatory conditions; significant reduction of VEGF by CaMKII inhibitor

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Macrophages expressing the pro-angiogenic transcription factor hypoxia-inducible factor (HIF)-1alpha have been demonstrated in rheumatoid arthritis (RA) in the synovial tissue. Aim of the present study was to investigate intracellular signal transduction regulation of pro-inflammatory HIF-1 alpha expression in macrophages to identify possible new intervention strategies. We investigated the effects of CaMKII-inhibitors amongst other kinase inhibitors, on HIF-1 alpha expression and downstream production of pro-angiogenic factors in macrophages.</p> <p>Methods</p> <p>Differentiated THP-1 cells and synovial fluid (SF) macrophages were stimulated with 1 μg/ml LPS with or without pretreatment with specific inhibitors of the ERK pathway (PD98059), the PI3K pathway (LY294002), and the CaMKII pathway (KN93 and SMP-114). mRNA and protein expression of HIF-1 alpha, VEGF, MMP-9, and IL-8 was measured in cell lysates and cell supernatants.</p> <p>Results</p> <p>HIF-1 alpha protein expression in LPS-stimulated THP-1 macrophages could be blocked by ERK- and PI3K-inhibitors, but also by the CaMKII inhibitor KN93. THP-1 and SF macrophages produced high levels of VEGF, IL-8, and MMP-9, and VEGF protein production was significantly inhibited by PI3K-inhibitor, and by both CaMKII inhibitors. LPS stimulation in an hypoxic environment did not change VEGF levels, suggesting that LPS induced VEGF production in macrophages is more important than the hypoxic induction.</p> <p>Conclusions</p> <p>Expression of HIF-1 alpha and downstream effects in macrophages are regulated by ERK-, PI3K, but also by CaMKII pathways. Inhibition of HIF-1α protein expression and significant inhibition of VEGF production in macrophages was found using CaMKII inhibitors. This is an unknown but very interesting effect of the CaMKII inhibitor SMP-114, which has been in clinical trial as DMARD for the treatment of RA. This effect may contribute to the anti-arthritic effects of SMP-114.</p

    A Comparative Computer Simulation of Dendritic Morphology

    Get PDF
    Computational modeling of neuronal morphology is a powerful tool for understanding developmental processes and structure-function relationships. We present a multifaceted approach based on stochastic sampling of morphological measures from digital reconstructions of real cells. We examined how dendritic elongation, branching, and taper are controlled by three morphometric determinants: Branch Order, Radius, and Path Distance from the soma. Virtual dendrites were simulated starting from 3,715 neuronal trees reconstructed in 16 different laboratories, including morphological classes as diverse as spinal motoneurons and dentate granule cells. Several emergent morphometrics were used to compare real and virtual trees. Relating model parameters to Branch Order best constrained the number of terminations for most morphological classes, except pyramidal cell apical trees, which were better described by a dependence on Path Distance. In contrast, bifurcation asymmetry was best constrained by Radius for apical, but Path Distance for basal trees. All determinants showed similar performance in capturing total surface area, while surface area asymmetry was best determined by Path Distance. Grouping by other characteristics, such as size, asymmetry, arborizations, or animal species, showed smaller differences than observed between apical and basal, pointing to the biological importance of this separation. Hybrid models using combinations of the determinants confirmed these trends and allowed a detailed characterization of morphological relations. The differential findings between morphological groups suggest different underlying developmental mechanisms. By comparing the effects of several morphometric determinants on the simulation of different neuronal classes, this approach sheds light on possible growth mechanism variations responsible for the observed neuronal diversity
    corecore