56 research outputs found

    Sentiment Paradoxes in Social Networks: Why Your Friends Are More Positive Than You?

    Full text link
    Most people consider their friends to be more positive than themselves, exhibiting a Sentiment Paradox. Psychology research attributes this paradox to human cognition bias. With the goal to understand this phenomenon, we study sentiment paradoxes in social networks. Our work shows that social connections (friends, followees, or followers) of users are indeed (not just illusively) more positive than the users themselves. This is mostly due to positive users having more friends. We identify five sentiment paradoxes at different network levels ranging from triads to large-scale communities. Empirical and theoretical evidence are provided to validate the existence of such sentiment paradoxes. By investigating the relationships between the sentiment paradox and other well-developed network paradoxes, i.e., friendship paradox and activity paradox, we find that user sentiments are positively correlated to their number of friends but rarely to their social activity. Finally, we demonstrate how sentiment paradoxes can be used to predict user sentiments.Comment: The 14th International AAAI Conference on Web and Social Media (ICWSM 2020

    Diverse Consequences in Liver Injury in Mice with Different Autophagy Functional Status Treated with Alcohol

    Get PDF
    Alcoholic fatty liver disease is often complicated by other pathologic insults, such as viral infection or high-fat diet. Autophagy plays a homeostatic role in the liver but can be compromised by alcohol, high-fat diet, or viral infection, which in turn affects the disease process caused by these etiologies. To understand the full impact of autophagy modulation on alcohol-induced liver injury, several genetic models of autophagy deficiency, which have different levels of functional alterations, were examined after acute binge or chronic-plus-binge treatment. Mice given alcohol with either mode and induced with deficiency in liver-specific autophagy-related protein (Atg)-7 shortly after the induction of Atg7 deletion had elevated liver injury, indicating the protective role of autophagy. Constitutive hepatic Atg7–deficient mice, in which Atg7 was deleted in embryos, were more susceptible with chronic-plus-binge but not with acute alcohol treatment. Constitutive hepatic Atg5–deficient mice, in which Atg5 was deleted in embryos, were more susceptible with acute alcohol treatment, but liver injury was unexpectedly improved with the chronic-plus-binge regimen. A prolonged Atg deficiency may complicate the hepatic response to alcohol treatment, likely in part due to endogenous liver injury. The complexity of the relationship between autophagy deficiency and alcohol-induced liver injury can thus be affected by the timing of autophagy dysfunction, the exact autophagy gene being affected, and the alcohol treatment regimen

    Research progress of cancer cell membrane coated nanoparticles for the diagnosis and therapy of breast cancer

    Get PDF
    Nanoparticles (NPs) disguised in the cell membrane are a new type of biomimetic platform. Due to their ability to simulate the unique biological functions of membrane-derived cells, they have become one of the hotspots of research at home and abroad. The tumor-specific antigen antibody carried by breast cancer cell membranes can modify nanoparticles to have homologous tumor targeting. Therefore, nanoparticles wrapped in cancer cell membranes have been widely used in research on the diagnosis and treatment of breast cancer. This article reviews the current situation, prospects, advantages and limitations of nanoparticles modified by cancer cell membranes in the treatment and diagnosis of breast cancer

    A photo-triggered and photo-calibrated nitric oxide donor: rational design, spectral characterizations, and biological applications

    Get PDF
    Nitric oxide (NO) donors are valuable tools to probe the profound implications of NO in health and disease. The elusive nature of NO bio-relevance has largely limited the use of spontaneous NO donors and promoted the development of next generation NO donors, whose NO release is not only stimulated by a trigger, but also readily monitored via a judiciously built-in self-calibration mechanism. Light is without a doubt the most sensitive, versatile and biocompatible method of choice for both triggering and monitoring, for applications in complex biological matrices. Herein, we designed and synthesized an N-nitroso rhodamine derivative (NOD560) as a photo-triggered and photo-calibrated NO donor to address this need. NOD560 is essentially non-fluorescent. Upon irradiation by green light (532nm), it efficiently release NO and a rhodamine dye, the dramatic fluorescence turn-on from which could be harnessed to conveniently monitor the localization, flux, and dose of NO release. The potentials of NOD560 for in vitro biological applications were also exemplified in in vitro biological models, i.e. mesenchymal stem cell (MSC) migration suppression. NOD560 is expected to complement the existing NO donors and find widespread applications in chemical biological studies

    麹菌の窒素異化代謝に関わる酵素の研究

    Get PDF
    University of Tokyo (東京大学

    Modeling and Analysis of Driving Behaviour for Heterogeneous Traffic Flow Considering Market Penetration under Capacity Constraints

    No full text
    Based on analytical and simulation methods, this paper discusses the path choice behavior of mixed traffic flow with autonomous vehicles, advanced traveler information systems (ATIS) vehicles and ordinary vehicles, aiming to promote the development of autonomous vehicles. Firstly, a bi-level programming model of mixed traffic flow assignments constrained by link capacity is established to minimize travel time. Subsequently, the algorithm based on the incremental allocation method and method of successive averages is proposed to solve the model. Through a numerical example, the road network capacity under different modes is obtained, the impact of market penetration on travel time is analyzed, and the state and characteristics of single equilibrium flow and mixed equilibrium flow are explored. Analysis results show that the road network can be maximized based on saving travel time when all vehicles are autonomous, especially when the autonomous lane is adopted. The travel time can be shortened by increasing the market penetration of autonomous vehicles and ATIS vehicles, while the former is more effective. However, the popularization of autonomous vehicles cannot be realized in the short term; the market penetration of autonomous vehicles and ATIS vehicles can be set to 0.2 and 0.6, respectively, during the introduction period
    corecore