30 research outputs found

    Hotspots of dendritic spine turnover facilitate clustered spine addition and learning and memory.

    Get PDF
    Modeling studies suggest that clustered structural plasticity of dendritic spines is an efficient mechanism of information storage in cortical circuits. However, why new clustered spines occur in specific locations and how their formation relates to learning and memory (L&M) remain unclear. Using in vivo two-photon microscopy, we track spine dynamics in retrosplenial cortex before, during, and after two forms of episodic-like learning and find that spine turnover before learning predicts future L&M performance, as well as the localization and rates of spine clustering. Consistent with the idea that these measures are causally related, a genetic manipulation that enhances spine turnover also enhances both L&M and spine clustering. Biophysically inspired modeling suggests turnover increases clustering, network sparsity, and memory capacity. These results support a hotspot model where spine turnover is the driver for localization of clustered spine formation, which serves to modulate network function, thus influencing storage capacity and L&M

    Mechanism and treatment for learning and memory deficits in mouse models of Noonan syndrome.

    Get PDF
    In Noonan syndrome (NS) 30-50% of subjects show cognitive deficits of unknown etiology and with no known treatment. Here, we report that knock-in mice expressing either of two NS-associated mutations in Ptpn11, which encodes the nonreceptor protein tyrosine phosphatase Shp2, show hippocampal-dependent impairments in spatial learning and deficits in hippocampal long-term potentiation (LTP). In addition, viral overexpression of an NS-associated allele PTPN11(D61G) in adult mouse hippocampus results in increased baseline excitatory synaptic function and deficits in LTP and spatial learning, which can be reversed by a mitogen-activated protein kinase kinase (MEK) inhibitor. Furthermore, brief treatment with lovastatin reduces activation of the GTPase Ras-extracellular signal-related kinase (Erk) pathway in the brain and normalizes deficits in LTP and learning in adult Ptpn11(D61G/+) mice. Our results demonstrate that increased basal Erk activity and corresponding baseline increases in excitatory synaptic function are responsible for the LTP impairments and, consequently, the learning deficits in mouse models of NS. These data also suggest that lovastatin or MEK inhibitors may be useful for treating the cognitive deficits in NS

    CCR5 is a suppressor for cortical plasticity and hippocampal learning and memory

    Get PDF
    Although the role of CCR5 in immunity and in HIV infection has been studied widely, its role in neuronal plasticity, learning and memory is not understood. Here, we report that decreasing the function of CCR5 increases MAPK/CREB signaling, long-term potentiation (LTP), and hippocampus-dependent memory in mice, while neuronal CCR5 overexpression caused memory deficits. Decreasing CCR5 function in mouse barrel cortex also resulted in enhanced spike timing dependent plasticity and consequently, dramatically accelerated experience-dependent plasticity. These results suggest that CCR5 is a powerful suppressor for plasticity and memory, and CCR5 over-activation by viral proteins may contribute to HIV-associated cognitive deficits. Consistent with this hypothesis, the HIV V3 peptide caused LTP, signaling and memory deficits that were prevented by Ccr5 knockout or knockdown. Overall, our results demonstrate that CCR5 plays an important role in neuroplasticity, learning and memory, and indicate that CCR5 has a role in the cognitive deficits caused by HIV

    NMDA Mediated Contextual Conditioning Changes miRNA Expression

    Get PDF
    We measured the expression of 187 miRNAs using quantitative real time PCR in the hippocampal CA1 region of contextually conditioned mice and cultured embryonic rat hippocampal neurons after neuronal stimulation with either NMDA or bicuculline. Many of the changes in miRNA expression after these three types of stimulation were similar. Surprisingly, the expression level of half of the 187 measured miRNAs was changed in response to contextual conditioning in an NMDA receptor-dependent manner. Genes that control miRNA biogenesis and components of the RISC also exhibited activity induced expression changes and are likely to contribute to the widespread changes in the miRNA profile. The widespread changes in miRNA expression are consistent with the finding that genes up-regulated by contextual conditioning have longer 3′ UTRs and more predicted binding sites for miRNAs. Among the miRNAs that changed their expression after contextual conditioning, several inhibit inhibitors of the mTOR pathway. These findings point to a role for miRNAs in learning and memory that includes mTOR-dependent modulation of protein synthesis
    corecore