59 research outputs found

    Mitochondrial Dysfunction-Associated Arrhythmogenic Substrates in Diabetes Mellitus

    Get PDF
    There is increasing evidence that diabetic cardiomyopathy increases the risk of cardiac arrhythmia and sudden cardiac death. While the detailed mechanisms remain incompletely understood, the loss of mitochondrial function, which is often observed in the heart of patients with diabetes, has emerged as a key contributor to the arrhythmogenic substrates. In this mini review, the pathophysiology of mitochondrial dysfunction in diabetes mellitus is explored in detail, followed by descriptions of several mechanisms potentially linking mitochondria to arrhythmogenesis in the context of diabetic cardiomyopathy

    A Reaction-Diffusion Model of ROS-Induced ROS Release in a Mitochondrial Network

    Get PDF
    Loss of mitochondrial function is a fundamental determinant of cell injury and death. In heart cells under metabolic stress, we have previously described how the abrupt collapse or oscillation of the mitochondrial energy state is synchronized across the mitochondrial network by local interactions dependent upon reactive oxygen species (ROS). Here, we develop a mathematical model of ROS-induced ROS release (RIRR) based on reaction-diffusion (RD-RIRR) in one- and two-dimensional mitochondrial networks. The nodes of the RD-RIRR network are comprised of models of individual mitochondria that include a mechanism of ROS-dependent oscillation based on the interplay between ROS production, transport, and scavenging; and incorporating the tricarboxylic acid (TCA) cycle, oxidative phosphorylation, and Ca2+ handling. Local mitochondrial interaction is mediated by superoxide (O2.−) diffusion and the O2.−-dependent activation of an inner membrane anion channel (IMAC). In a 2D network composed of 500 mitochondria, model simulations reveal ΔΨm depolarization waves similar to those observed when isolated guinea pig cardiomyocytes are subjected to a localized laser-flash or antioxidant depletion. The sensitivity of the propagation rate of the depolarization wave to O2.− diffusion, production, and scavenging in the reaction-diffusion model is similar to that observed experimentally. In addition, we present novel experimental evidence, obtained in permeabilized cardiomyocytes, confirming that ΔΨm depolarization is mediated specifically by O2.−. The present work demonstrates that the observed emergent macroscopic properties of the mitochondrial network can be reproduced in a reaction-diffusion model of RIRR. Moreover, the findings have uncovered a novel aspect of the synchronization mechanism, which is that clusters of mitochondria that are oscillating can entrain mitochondria that would otherwise display stable dynamics. The work identifies the fundamental mechanisms leading from the failure of individual organelles to the whole cell, thus it has important implications for understanding cell death during the progression of heart disease

    Effects of Isolated Impaired Fasting Glucose on Brain Injury During Cardiac Surgery Under Cardiopulmonary Bypass

    No full text
    Objective: To evaluate the effects of isolated impaired fasting glucose (IIFG) on brain injury in patients undergoing cardiopulmonary bypass (CPB) surgery. Methods: Patients with rheumatic heart valve disease who underwent elective mitral valve replacement were included and divided into control and IIFG groups. Pre-, intra-, and postoperative blood glucose levels, serum insulin levels, insulin resistance index (HOMA-IR), lactic acid levels, and neuron-specific enolase (NSE) and S100B levels were measured. The cerebral oxygen extraction ratio (OER) was calculated. Cognitive function was assessed via the Mini-Mental State Examination (MMSE). Results: HOMA-IR levels were higher in the IIFG group than the control group 30 min after the beginning of CPB, at the termination of CPB, and 2 h after the termination of CPB. Cerebral OER and lactic acid increased intraoperatively in both groups, especially in the IIFG group. NSE and S100B levels were higher in the IIFG group than in the control group at the termination of CPB, 2 h after the termination of CPB, and at 24 h postoperatively. The MMSE scores did not significantly differ between the two groups. Delirium occurred in two patients in the IIFG group, and one in the control group. No other signs and symptoms of brain injuries were detected in either group. Conclusions: The increased postoperative NSE and S100B levels in the IIFG group compared with controls may be associated with severe insulin resistance and stress hyperglycemia. However, the IIFG group did not have clinical manifestations of brain injuries, including cognitive impairment

    Dynamic modulation of Ca2+ sparks by mitochondrial oscillations in isolated guinea pig cardiomyocytes under oxidative stress

    Full text link
    Heavy metal soil pollution from anthropogenic sources such as historical use of fertilizers, poor waste disposal, and spills from industries are a serious environmental problem. This can be especially damaging in developing countries where incentives are limited to remediate these soils, and some of the poorest regions are the most affected. Soil remediation can clean heavy metal polluted soil to a level that is sustainable for the environment and the organisms that inhabit it. Many conventional soil remediation techniques can be very expensive, and resource and energy intensive, making them poor choices for developing countries. However, phytoremediation, an emerging soil remediation technology, is much cheaper and less intensive by using the natural ability of certain plants to clean polluted soils. Although phytoremediation has been considered the best available technology for developing countries with heavy metal polluted soil, it is still being underutilized. In this thesis, through the examination of case studies from the U.S., several barriers are identified that are preventing further implementation of phytoremediation projects in developing countries. These barriers include, the difficulties for developing countries in recognising the scale of heavy metal pollution, a lack of enforcement of environmental legislation and standards, prohibitive costs of projects, problems with the effectiveness of phytoremediation as a soil remediation technology, and a lack of technological knowledge.2018-10-30</p

    Mitochondria-derived ROS bursts disturb Ca 2+

    No full text

    Histone deacetylase AtSRT1 links metabolic flux and stress response in <em>Arabidopsis</em>

    No full text
    How plant metabolic flux alters gene expression to optimize plant growth and response to stress remains largely unclear. Here, we report that Arabidopsis thaliana NAD(+)-dependent histone deacetylase AtSRT1 negatively regulates plant tolerance to stress and glycolysis but stimulates mitochondrial respiration. We found that AtSRT1 interacts with Arabidopsis cMyc-Binding Protein 1 (AtMBP-1), a transcriptional repressor produced by alternative translation of the cytosolic glycolytic enolase gene LOS2/ENO2. We demonstrated that AtSRT1 could associate with the chromatin of AtMBP-1 targets LOS2/ENO2 and STZ/ZAT10, both of which encode key stress regulators, and reduce the H3K9ac levels at these genes to repress their transcription. Overexpression of both AtSRT1 and AtMBP-1 had synergistic effects on the expression of glycolytic genes, glycolytic enzymatic activities, and mitochondrial respiration. Furthermore, we found that AtMBP-1 is lysine-acetylated and vulnerable to proteasomal protein degradation, while AtSRT1 could remove its lysine acetylation and significantly enhance its stability in vivo. Taken together, these results indicate that AtSRT1 regulates primary metabolism and stress response by both epigenetic regulation and modulation of AtMBP-1 transcriptional activity in Arabidopsis
    • …
    corecore