246 research outputs found

    GANN: Graph Alignment Neural Network for Semi-Supervised Learning

    Full text link
    Graph neural networks (GNNs) have been widely investigated in the field of semi-supervised graph machine learning. Most methods fail to exploit adequate graph information when labeled data is limited, leading to the problem of oversmoothing. To overcome this issue, we propose the Graph Alignment Neural Network (GANN), a simple and effective graph neural architecture. A unique learning algorithm with three alignment rules is proposed to thoroughly explore hidden information for insufficient labels. Firstly, to better investigate attribute specifics, we suggest the feature alignment rule to align the inner product of both the attribute and embedding matrices. Secondly, to properly utilize the higher-order neighbor information, we propose the cluster center alignment rule, which involves aligning the inner product of the cluster center matrix with the unit matrix. Finally, to get reliable prediction results with few labels, we establish the minimum entropy alignment rule by lining up the prediction probability matrix with its sharpened result. Extensive studies on graph benchmark datasets demonstrate that GANN can achieve considerable benefits in semi-supervised node classification and outperform state-of-the-art competitors

    An Energy Efficient Technique Using Electric Active Shielding for Capacitive Coupling Intra-Body Communication

    No full text
    Capacitive coupling intra-body communication (CC-IBC) has become one of the candidates for healthcare sensor networks due to its positive prevailing features of energy efficiency, transmission rate and security. Under the CC-IBC scheme, some of the electric field emitted from signal (SIG) electrode of the transmitter will couple directly to the ground (GND) electrode, acting equivalently as an internal impedance of the signal source and inducing considerable energy losses. However, none of the previous works have fully studied the problem. In this paper, the underlying theory of such energy loss is investigated and quantitatively evaluated using conventional parameters. Accordingly, a method of electric active shielding is proposed to reduce the displacement current across the SIG-GND electrodes, leading to less power loss. In addition, the variation of such loss in regard to frequency range and positions on human body was also considered. The theory was validated by finite element method simulation and experimental measurement. The prototype result shows that the receiving power has been improved by approximate 5.5 dBm while the total power consumption is maximally 9 mW less using the proposed technique, providing an energy efficient option in physical layer for wearable and implantable healthcare sensor networks

    Deep Graph Clustering via Dual Correlation Reduction

    No full text
    Deep graph clustering, which aims to reveal the underlying graph structure and divide the nodes into different groups, has attracted intensive attention in recent years. However, we observe that, in the process of node encoding, existing methods suffer from representation collapse which tends to map all data into the same representation. Consequently, the discriminative capability of the node representation is limited, leading to unsatisfied clustering performance. To address this issue, we propose a novel self-supervised deep graph clustering method termed Dual Correlation Reduction Network (DCRN) by reducing information correlation in a dual manner. Specifically, in our method, we first design a siamese network to encode samples. Then by forcing the cross-view sample correlation matrix and cross-view feature correlation matrix to approximate two identity matrices, respectively, we reduce the information correlation in the dual-level, thus improving the discriminative capability of the resulting features. Moreover, in order to alleviate representation collapse caused by over-smoothing in GCN, we introduce a propagation regularization term to enable the network to gain long-distance information with the shallow network structure. Extensive experimental results on six benchmark datasets demonstrate the effectiveness of the proposed DCRN against the existing state-of-the-art methods. The code of DCRN is available at https://github.com/yueliu1999/DCRN and a collection (papers, codes and, datasets) of deep graph clustering is shared at https://github.com/yueliu1999/Awesome-Deep-Graph-Clustering on Github

    An Improved Double-Branch Network for Estimation of Crater Ages Based on Semisupervised Learning and Multi-Source Lunar Data

    No full text
    While various methods have been developed to estimate the age of impact craters, such as the crater size frequency distribution and morphology methods. Accurately and efficiently estimating the ages of lunar craters using traditional techniques is challenging due to their complex morphology and large number. As a result, the accuracy of age estimation algorithms for meteorite craters based on deep learning is restricted by factors such as a scarcity of age-labeled data and the complex morphology of these craters. To address these issues, this article presents an enhanced double-branch network for estimating crater ages via semisupervised learning and multisource lunar data. The algorithm consists of three steps: semisupervised training data augmentation, adaptive two-branch feature extraction, and a two-stage crater age classification process. The effectiveness of the improved approach was validated through ablation experiments, resulting in an overall accuracy of 83.7% on the test set of meteorite craters. This is 5.2% higher than the accuracy achieved by the previous deep learning method
    • …
    corecore