31 research outputs found

    Melatonin Mediates Osteoblast Proliferation Through the STIM1/ORAI1 Pathway

    Get PDF
    Based on the positive correlation between bone mineral density and melatonin levels in blood, this study confirmed that melatonin supplementation prevents postmenopausal osteoporosis. We further confirmed that melatonin promotes an increase in intracellular calcium concentrations through the STIM1/ORAI1 pathway, thereby inducing the proliferation of osteoblasts.Introduction: Osteoporosis (OP) is a progressive, systemic bone disease that is one of the main causes of disability and death in elderly female patients. As an amine hormone produced by the human pineal gland, melatonin plays an important role in regulating bone metabolism. This study intends to investigate the relationship between melatonin levels in human blood and bone density and to suggest the efficacy of melatonin in treating osteoporosis by performing in vivo and in vitro experiments.Methods: We used liquid chromatography-tandem mass spectrometry to determine the serum melatonin levels in postmenopausal women with osteoporosis and young women with a normal bone mass. The bone density, BV/TV, Tb.Th, Tb.Sp and other indicators of postmenopausal osteoporosis and mice with a normal bone mass were detected by measuring bone density and micro-CT. The intracellular calcium ion concentration was detected using fluorescence microscopy and a full-wavelength multifunctional microplate reader, and the expression of SOCE-related genes and STIM1/ORAI1 proteins was detected using PCR and WB.Results: This study confirmed that bone density positively correlates with the melatonin level in human blood. In the animal model, melatonin supplementation reverses postmenopausal osteoporosis. We explored the internal mechanism of melatonin treatment of osteoporosis. Melatonin promotes an increase in intracellular calcium ion concentrations through the STIM1/ORAI1 pathway to induce osteoblast proliferation.Conclusions: This study provides an important theoretical basis for the clinical application of melatonin in patients with osteoporosis and helps to optimize the diagnosis and treatment of postmenopausal osteoporosis

    The Histone Variant H2A.W Defines Heterochromatin and Promotes Chromatin Condensation in Arabidopsis

    Get PDF
    SummaryHistone variants play crucial roles in gene expression, genome integrity, and chromosome segregation. We report that the four H2A variants in Arabidopsis define different genomic features, contributing to overall genomic organization. The histone variant H2A.W marks heterochromatin specifically and acts in synergy with heterochromatic marks H3K9me2 and DNA methylation to maintain transposon silencing. In vitro, H2A.W enhances chromatin condensation by promoting fiber-to-fiber interactions via its conserved C-terminal motif. In vivo, H2A.W is required for heterochromatin condensation, demonstrating that H2A.W plays critical roles in heterochromatin organization. Similarities in conserved motifs between H2A.W and another H2A variant in metazoans suggest that plants and animals share common mechanisms for heterochromatin condensation

    Structural and functional insight into kinetochore protein CENP-N and its interaction with CENP-A nucleosome

    Get PDF
    2018 Spring.Includes bibliographical references.Proper chromosome segregation during mitosis is one of the most important processes to ensure genome integrity. During this process, the microtubules are captured by a multi-unit complex called kinetochore. The kinetochore is assembled specifically at centromere through recognizing nucleosomes containing the histone H3 variant CENP-A. CENP-N and CENP-C are the only two kinetochore proteins that specifically recognize CENP-A nucleosomes. There are about 1 in 25 nucleosomes that contain CENP-A at the centromere. Therefore, how these two proteins 'ignore' the abundant H3 nucleosomes to interact selectively with a handful of centromeric CENP-A nucleosomes has important implications for genome stability during cell division. To obtain deep insight into the mechanism behind this, I solved the structure of CENP-A nucleosome in complex with CENP-N by single particle cryo electron microscopy (cryo-EM) at 4 Å. Through charge and space complementarity, the unique "RG" loop on CENP-A is decoded by CENP-N. CENP-N also engages in extensive interactions with a long segment of the distorted nucleosomal DNA double helix. These interactions were validated in vitro and in vivo.The DNA ends of CENP-A nucleosome which are disordered in the crystal structure are mostly visible in the cryo-EM structure when it is in complex with CENP-N. By micrococcal nuclease digestion assay, the CENP-A nucleosome DNA ends are shown to be less flexible when CENP-N is presented in solution, which is consistent with structural study. Since CENP-N does not interact with DNA ends directly, the less dynamics on the DNA ends indicate a more stable nucleosome. By quantitative electrophoretic mobility shift assay (EMSA) and electron microscopy, the stabilizing effect of CENP-N on CENP-A nucleosome was confirmed in vitro. However, this effect was not significant in vivo, which indicates that the CENP-A nucleosome stability in vivo is determined by multiple factors. Besides the change on DNA ends of CENP-A nucleosome, the orientation of H4 N-terminal tail is altered due to its interaction with CENP-N, with important implications for the multiple biological processes involving the H4 N-terminal tail, especially with respect to the formation of chromatin higher order structure The structural and functional studies in this thesis shed light on how CENP-N ensures that the kinetochore assembles specifically at the centromere

    NMR data for novel flavonoids from Lonicera japonica flower buds

    No full text
    The data presented in this article are associated with the research article entitled “Novel flavonoids from Lonicera japonica flower buds and validation of their anti-hepatoma and hepatoprotective activity in vitro studies” (Ge et al., 2018) [1]. The aim of this data was to provide the NMR spectrum of novel flavonoids from Lonicera japonica flower buds. Samples were isolated from EtOAc fraction of Lonicera japonica flower buds extracts, then dissolved in DMSO-d6 before NMR testing

    Virus-encoded histone doublets are essential and form nucleosome-like structures

    No full text
    International audienceThe organization of genomic DNA into defined nucleosomes has long been viewed as a hallmark of eukaryotes. This paradigm has been challenged by the identification of “minimalist” histones in archaea and more recently by the discovery of genes that encode fused remote homologs of the four eukaryotic histones in Marseilleviridae, a subfamily of giant viruses that infect amoebae. We demonstrate that viral doublet histones are essential for viral infectivity, localize to cytoplasmic viral factories after virus infection, and ultimately are found in the mature virions. Cryogenic electron microscopy (cryo-EM) structures of viral nucleosome-like particles show strong similarities to eukaryotic nucleosomes despite the limited sequence identify. The unique connectors that link the histone chains contribute to the observed instability of viral nucleosomes, and some histone tails assume structural roles. Our results further expand the range of “organisms” that require nucleosomes and suggest a specialized function of histones in the biology of these unusual viruses

    Multi-Level Resistive Switching in SnSe/SrTiO3 Heterostructure Based Memristor Device

    No full text
    Multilevel resistive switching in memristive devices is vital for applications in non-volatile memory and neuromorphic computing. In this study, we report on the multilevel resistive switching characteristics in SnSe/SrTiO3(STO) heterojunction-based memory devices with silver (Ag) and copper (Cu) top electrodes. The SnSe/STO-based memory devices present bipolar resistive switching (RS) with two orders of magnitude on/off ratio, which is reliable and stable. Moreover, multilevel state switching is achieved in the devices by sweeping voltage with current compliance to SET the device from high resistance state (HRS) to low resistance state (LRS) and RESET from LRS to HRS by voltage pulses without compliance current. With Ag and Cu top electrodes, respectively, eight and six levels of resistance switching were demonstrated in the SnSe/SrTiO3 heterostructures with a Pt bottom electrode. These results suggest that a SnSe/STO heterojunction-based memristor is promising for applications in neuromorphic computing as a synaptic device
    corecore