3,300 research outputs found

    A Finite Element Method With Singularity Reconstruction for Fractional Boundary Value Problems

    Get PDF
    We consider a two-point boundary value problem involving a Riemann-Liouville fractional derivative of order \al\in (1,2) in the leading term on the unit interval (0,1)(0,1). Generally the standard Galerkin finite element method can only give a low-order convergence even if the source term is very smooth due to the presence of the singularity term x^{\al-1} in the solution representation. In order to enhance the convergence, we develop a simple singularity reconstruction strategy by splitting the solution into a singular part and a regular part, where the former captures explicitly the singularity. We derive a new variational formulation for the regular part, and establish that the Galerkin approximation of the regular part can achieve a better convergence order in the L2(0,1)L^2(0,1), H^{\al/2}(0,1) and L(0,1)L^\infty(0,1)-norms than the standard Galerkin approach, with a convergence rate for the recovered singularity strength identical with the L2(0,1)L^2(0,1) error estimate. The reconstruction approach is very flexible in handling explicit singularity, and it is further extended to the case of a Neumann type boundary condition on the left end point, which involves a strong singularity x^{\al-2}. Extensive numerical results confirm the theoretical study and efficiency of the proposed approach.Comment: 23 pp. ESAIM: Math. Model. Numer. Anal., to appea

    An Analysis of Galerkin Proper Orthogonal Decomposition for Subdiffusion

    Get PDF
    In this work, we develop a novel Galerkin-L1-POD scheme for the subdiffusion model with a Caputo fractional derivative of order α(0,1)\alpha\in (0,1) in time, which is often used to describe anomalous diffusion processes in heterogeneous media. The nonlocality of the fractional derivative requires storing all the solutions from time zero. The proposed scheme is based on continuous piecewise linear finite elements, L1 time stepping, and proper orthogonal decomposition (POD). By constructing an effective reduced-order scheme using problem-adapted basis functions, it can significantly reduce the computational complexity and storage requirement. We shall provide a complete error analysis of the scheme under realistic regularity assumptions by means of a novel energy argument. Extensive numerical experiments are presented to verify the convergence analysis and the efficiency of the proposed scheme.Comment: 25 pp, 5 figure

    Correction of high-order BDF convolution quadrature for fractional evolution equations

    Get PDF
    We develop proper correction formulas at the starting k1k-1 steps to restore the desired kthk^{\rm th}-order convergence rate of the kk-step BDF convolution quadrature for discretizing evolution equations involving a fractional-order derivative in time. The desired kthk^{\rm th}-order convergence rate can be achieved even if the source term is not compatible with the initial data, which is allowed to be nonsmooth. We provide complete error estimates for the subdiffusion case α(0,1)\alpha\in (0,1), and sketch the proof for the diffusion-wave case α(1,2)\alpha\in(1,2). Extensive numerical examples are provided to illustrate the effectiveness of the proposed scheme.Comment: 22 pages, 3 figure

    Pointwise-in-time error estimates for an optimal control problem with subdiffusion constraint

    Full text link
    In this work, we present numerical analysis for a distributed optimal control problem, with box constraint on the control, governed by a subdiffusion equation which involves a fractional derivative of order α(0,1)\alpha\in(0,1) in time. The fully discrete scheme is obtained by applying the conforming linear Galerkin finite element method in space, L1 scheme/backward Euler convolution quadrature in time, and the control variable by a variational type discretization. With a space mesh size hh and time stepsize τ\tau, we establish the following order of convergence for the numerical solutions of the optimal control problem: O(τmin(1/2+αϵ,1)+h2)O(\tau^{\min({1}/{2}+\alpha-\epsilon,1)}+h^2) in the discrete L2(0,T;L2(Ω))L^2(0,T;L^2(\Omega)) norm and O(ταϵ+h2h2)O(\tau^{\alpha-\epsilon}+\ell_h^2h^2) in the discrete L(0,T;L2(Ω))L^\infty(0,T;L^2(\Omega)) norm, with any small ϵ>0\epsilon>0 and h=ln(2+1/h)\ell_h=\ln(2+1/h). The analysis relies essentially on the maximal LpL^p-regularity and its discrete analogue for the subdiffusion problem. Numerical experiments are provided to support the theoretical results.Comment: 20 pages, 6 figure

    Discrete maximal regularity of time-stepping schemes for fractional evolution equations

    Get PDF
    In this work, we establish the maximal p\ell^p-regularity for several time stepping schemes for a fractional evolution model, which involves a fractional derivative of order α(0,2)\alpha\in(0,2), α1\alpha\neq 1, in time. These schemes include convolution quadratures generated by backward Euler method and second-order backward difference formula, the L1 scheme, explicit Euler method and a fractional variant of the Crank-Nicolson method. The main tools for the analysis include operator-valued Fourier multiplier theorem due to Weis [48] and its discrete analogue due to Blunck [10]. These results generalize the corresponding results for parabolic problems

    A Petrov-Galerkin Finite Element Method for Fractional Convection-Diffusion Equations

    Get PDF
    In this work, we develop variational formulations of Petrov-Galerkin type for one-dimensional fractional boundary value problems involving either a Riemann-Liouville or Caputo derivative of order α(3/2,2)\alpha\in(3/2, 2) in the leading term and both convection and potential terms. They arise in the mathematical modeling of asymmetric super-diffusion processes in heterogeneous media. The well-posedness of the formulations and sharp regularity pickup of the variational solutions are established. A novel finite element method is developed, which employs continuous piecewise linear finite elements and "shifted" fractional powers for the trial and test space, respectively. The new approach has a number of distinct features: It allows deriving optimal error estimates in both L2(D)L^2(D) and H1(D)H^1(D) norms; and on a uniform mesh, the stiffness matrix of the leading term is diagonal and the resulting linear system is well conditioned. Further, in the Riemann-Liouville case, an enriched FEM is proposed to improve the convergence. Extensive numerical results are presented to verify the theoretical analysis and robustness of the numerical scheme.Comment: 23 p

    Numerical methods for time-fractional evolution equations with nonsmooth data: a concise overview

    Get PDF
    Over the past few decades, there has been substantial interest in evolution equations that involving a fractional-order derivative of order α(0,1)\alpha\in(0,1) in time, due to their many successful applications in engineering, physics, biology and finance. Thus, it is of paramount importance to develop and to analyze efficient and accurate numerical methods for reliably simulating such models, and the literature on the topic is vast and fast growing. The present paper gives a concise overview on numerical schemes for the subdiffusion model with nonsmooth problem data, which are important for the numerical analysis of many problems arising in optimal control, inverse problems and stochastic analysis. We focus on the following aspects of the subdiffusion model: regularity theory, Galerkin finite element discretization in space, time-stepping schemes (including convolution quadrature and L1 type schemes), and space-time variational formulations, and compare the results with that for standard parabolic problems. Further, these aspects are showcased with illustrative numerical experiments and complemented with perspectives and pointers to relevant literature.Comment: 24 pages, 3 figure

    Numerical analysis of nonlinear subdiffusion equations

    Get PDF
    We present a general framework for the rigorous numerical analysis of time-fractional nonlinear parabolic partial differential equations, with a fractional derivative of order α(0,1)\alpha\in(0,1) in time. The framework relies on three technical tools: a fractional version of the discrete Gr\"onwall-type inequality, discrete maximal regularity, and regularity theory of nonlinear equations. We establish a general criterion for showing the fractional discrete Gr\"onwall inequality, and verify it for the L1 scheme and convolution quadrature generated by BDFs. Further, we provide a complete solution theory, e.g., existence, uniqueness and regularity, for a time-fractional diffusion equation with a Lipschitz nonlinear source term. Together with the known results of discrete maximal regularity, we derive pointwise L2(Ω)L^2(\Omega) norm error estimates for semidiscrete Galerkin finite element solutions and fully discrete solutions, which are of order O(h2)O(h^2) (up to a logarithmic factor) and O(τα)O(\tau^\alpha), respectively, without any extra regularity assumption on the solution or compatibility condition on the problem data. The sharpness of the convergence rates is supported by the numerical experiments
    corecore