research

Pointwise-in-time error estimates for an optimal control problem with subdiffusion constraint

Abstract

In this work, we present numerical analysis for a distributed optimal control problem, with box constraint on the control, governed by a subdiffusion equation which involves a fractional derivative of order α(0,1)\alpha\in(0,1) in time. The fully discrete scheme is obtained by applying the conforming linear Galerkin finite element method in space, L1 scheme/backward Euler convolution quadrature in time, and the control variable by a variational type discretization. With a space mesh size hh and time stepsize τ\tau, we establish the following order of convergence for the numerical solutions of the optimal control problem: O(τmin(1/2+αϵ,1)+h2)O(\tau^{\min({1}/{2}+\alpha-\epsilon,1)}+h^2) in the discrete L2(0,T;L2(Ω))L^2(0,T;L^2(\Omega)) norm and O(ταϵ+h2h2)O(\tau^{\alpha-\epsilon}+\ell_h^2h^2) in the discrete L(0,T;L2(Ω))L^\infty(0,T;L^2(\Omega)) norm, with any small ϵ>0\epsilon>0 and h=ln(2+1/h)\ell_h=\ln(2+1/h). The analysis relies essentially on the maximal LpL^p-regularity and its discrete analogue for the subdiffusion problem. Numerical experiments are provided to support the theoretical results.Comment: 20 pages, 6 figure

    Similar works