research

Numerical analysis of nonlinear subdiffusion equations

Abstract

We present a general framework for the rigorous numerical analysis of time-fractional nonlinear parabolic partial differential equations, with a fractional derivative of order α(0,1)\alpha\in(0,1) in time. The framework relies on three technical tools: a fractional version of the discrete Gr\"onwall-type inequality, discrete maximal regularity, and regularity theory of nonlinear equations. We establish a general criterion for showing the fractional discrete Gr\"onwall inequality, and verify it for the L1 scheme and convolution quadrature generated by BDFs. Further, we provide a complete solution theory, e.g., existence, uniqueness and regularity, for a time-fractional diffusion equation with a Lipschitz nonlinear source term. Together with the known results of discrete maximal regularity, we derive pointwise L2(Ω)L^2(\Omega) norm error estimates for semidiscrete Galerkin finite element solutions and fully discrete solutions, which are of order O(h2)O(h^2) (up to a logarithmic factor) and O(τα)O(\tau^\alpha), respectively, without any extra regularity assumption on the solution or compatibility condition on the problem data. The sharpness of the convergence rates is supported by the numerical experiments

    Similar works