12,048 research outputs found

    Formation and tidal evolution of hot super-Earths in multiple planetary systems

    Full text link
    Hot super-Earths are exoplanets with masses < 10 Earth masses and orbital periods < 20 days. Around 8 hot super-Earths have been discovered in the neighborhood of solar system. In this lecture, we review the mechanisms for the formation of hot super-Earths, dynamical effects that play important roles in sculpting the architecture of the multiple planetary systems. Two example systems (HD 40307 and GJ 436) are presented to show the formation and evolution of hot super-Earths or Neptunes.Comment: 12 pages, 4 color figures, Lecture in 'Extrasolar planets in Multi-Body systems: Theory and Observation',Torun (Poland), August 25-29, 2008, to appear in European Astronomical Society Publication Serie

    The silicate model and carbon rich model of CoRoT-7b, Kepler-9d and Kepler-10b

    Full text link
    Possible bulk compositions of the super-Earth exoplanets, CoRoT-7b, Kepler-9d, and Kepler-10b are investigated by applying a commonly used silicate and a non-standard carbon model. Their internal structures are deduced using the suitable equation of state of the materials. The degeneracy problems of their compositions can be partly overcome, based on the fact that all three planets are extremely close to their host stars. By analyzing the numerical results, we conclude: 1) The iron core of CoRoT-7b is not more than 27% of its total mass within 1 σ\sigma mass-radius error bars, so an Earth-like composition is less likely, but its carbon rich model can be compatible with an Earth-like core/mantle mass fraction; 2) Kepler-10b is more likely with a Mercury-like composition, its old age implies that its high iron content may be a result of strong solar wind or giant impact; 3) the transiting-only super-Earth Kepler-9d is also discussed. Combining its possible composition with the formation theory, we can place some constraints on its mass and bulk composition.Comment: 20 pages, 8figures, accepted for publication in RAA. arXiv admin note: text overlap with arXiv:0707.289

    Migration and Final Location of Hot Super Earths in the Presence of Gas Giants

    Full text link
    Based on the conventional sequential-accretion paradigm, we have proposed that, during the migration of first-born gas giants outside the orbits of planetary embryos, super Earth planets will form inside the 2:1 resonance location by sweeping of mean motion resonances (Zhou et al. 2005). In this paper, we study the subsequent evolution of a super Earth (m_1) under the effects of tidal dissipation and perturbation from a first-born gas giant (m_2) in an outside orbit. Secular perturbation and mean motion resonances (especially 2:1 and 5:2 resonances) between m_1 and m_2 excite the eccentricity of m_1, which causes the migration of m_1 and results in a hot super Earth. The calculated final location of the hot super Earth is independent of the tidal energy dissipation factor Q'. The study of migration history of a Hot Super Earth is useful to reveal its Q' value and to predict its final location in the presence of one or more hot gas giants. When this investigation is applied to the GJ876 system, it correctly reproduces the observed location of GJ876d around 0.02AU.Comment: 7 pages, 4 figure

    Predicting the Configuration of Planetary System: KOI-152 Observed by Kepler

    Full text link
    The recent Kepler discovery of KOI-152 reveals a system of three hot super-Earth candidates that are in or near a 4:2:1 mean motion resonance. It is unlikely that they formed in situ, the planets probably underwent orbital migration during the formation and evolution process. The small semimajor axes of the three planets suggest that migration stopped at the inner edge of the primordial gas disk. In this paper we focus on the influence of migration halting mechanisms, including migration "dead zones", and inner truncation by the stellar magnetic field. We show that the stellar accretion rate, stellar magnetic field and the speed of migration in the proto-planetary disk are the main factors affecting the final configuration of KOI-152. Our simulations suggest that three planets may be around a star with low star accretion rate or with high magnetic field. On the other hand, slow type I migration, which decreases to one tenth of the linear analysis results, favors forming the configuration of KOI-152. Under such formation scenario, the planets in the system are not massive enough to open gaps in the gas disk. The upper limit of the planetary masses are estimated to be about 15, 1915,~19, and 24M24 M_\oplus, respectively. Our results are also indicative of the near Laplacian configurations that are quite common in planetary systems.Comment: 11 pages, 8 figures, accepted for publication in Ap

    From Dust To Planetesimal: The Snowball Phase ?

    Full text link
    The standard model of planet formation considers an initial phase in which planetesimals form from a dust disk, followed by a phase of mutual planetesimal-planetesimal collisions, leading eventually to the formation of planetary embryos. However, there is a potential transition phase (which we call the "snowball phase"), between the formation of the first planetesimals and the onset of mutual collisions amongst them, which has often been either ignored or underestimated in previous studies. In this snowball phase, isolated planetesimals move on Keplerian orbits and grow solely via the direct accretion of sub-cm sized dust entrained with the gas in the protoplanetary disk. Using a simplified model in which planetesimals are progressively produced from the dust, we consider the expected sizes to which the planetesimals can grow before mutual collisions commence and derive the dependence of this size on a number of critical parameters, including the degree of disk turbulence, the planetesimal size at birth and the rate of planetesimal creation. For systems in which turbulence is weak and the planetesimals are created at a low rate and with relatively small birth size, we show that the snowball growth phase can be very important, allowing planetesimals to grow by a factor of 10^6 in mass before mutual collisions take over. In such cases, the snowball growth phase can be the dominant mode to transfer mass from the dust to planetesimals. Moreover, such growth can take place within the typical lifetime of a protoplanetary gas disk. A noteworthy result is that ... ...(see the paper). For the specific case of close binaries such as Alpha Centauri ... ... (see the paper). From a more general perspective, these preliminary results suggest that an efficient snowball growth phase provides a large amount of "room at the bottom" for theories of planet formation.Comment: Accepted for publication in the Astrophysical Journal. 15 pages, 4 figures, 1 tabl
    corecore