804 research outputs found

    Potential energy surfaces of actinide and transfermium nuclei from multi-dimensional constraint covariant density functional theories

    Full text link
    Multi-dimensional constrained covariant density functional theories were developed recently. In these theories, all shape degrees of freedom \beta_{\lambda\mu} deformations with even \mu are allowed, e.g., \beta_{20}, \beta_{22}, \beta_{30}, \beta_{32}, \beta_{40}, \beta_{42}, \beta_{44}, and so on and the CDFT functional can be one of the following four forms: the meson exchange or point-coupling nucleon interactions combined with the non-linear or density-dependent couplings. In this contribution, some applications of these theories are presented. The potential energy surfaces of actinide nuclei in the (\beta_{20}, \beta_{22}, \beta_{30}) deformation space are investigated. It is found that besides the octupole deformation, the triaxiality also plays an important role upon the second fission barriers. The non-axial reflection-asymmetric \beta_{32} shape in some transfermium nuclei with N = 150, namely 246Cm, 248Cf, 250Fm, and 252No are studied.Comment: 7 pages, 6 figures; invited talk at the International Conference on Nuclear Structure and Related Topics, Jul 02-July 7, 2012, Dubn

    Microscopic and self-consistent description for neutron halo in deformed nuclei

    Full text link
    A deformed relativistic Hartree-Bogoliubov theory in continuum has been developed for the study of neutron halos in deformed nuclei and the halo phenomenon in deformed weakly bound nuclei is investigated. Magnesium and neon isotopes are studied and some results are presented for the deformed neutron-rich and weakly bound nuclei 44Mg and 36Ne. The core of the former nucleus is prolate, but the halo has a slightly oblate shape. This indicates a decoupling of the halo orbitals from the deformation of the core. The generic conditions for the existence of halos in deformed nuclei and for the occurrence of this decoupling effect are discussed.Comment: 7 pages, 2 figures; invited talk at the XXXV Brazilian Workshop on Nuclear Physics, Sep 2-6, 2012, Maresias, Brazi

    Halos in a deformed Relativistic Hartree-Bogoliubov theory in continuum

    Full text link
    In this contribution we present some recent results about neutron halos in deformed nuclei. A deformed relativistic Hartree-Bogoliubov theory in continuum has been developed and the halo phenomenon in deformed weakly bound nuclei is investigated. These weakly bound quantum systems present interesting examples for the study of the interdependence between the deformation of the core and the particles in the halo. Magnesium and neon isotopes are studied and detailed results are presented for the deformed neutron-rich and weakly bound nuclei 42Mg. The core of this nucleus is prolate, but the halo has a slightly oblate shape. This indicates a decoupling of the halo orbitals from the deformation of the core. The generic conditions for the existence of halos in deformed nuclei and for the occurrence of this decoupling effect are discussed.Comment: 6 pages, 2 figures; invited talk at the 2nd Int. Conf. on Nuclear Structure & Dynamics (NSD12), Opatija, Croatia, 9-13 July 201

    Multidimensionally-constrained relativistic mean-field study of triple-humped barriers in actinides

    Get PDF
    Potential energy surfaces (PES's) of actinide nuclei are characterized by a two-humped barrier structure. At large deformations beyond the second barrier the occurrence of a third one was predicted by Mic-Mac model calculations in the 1970s, but contradictory results were later reported. In this paper, triple-humped barriers in actinide nuclei are investigated with covariant density functional theory (CDFT). Calculations are performed using the multidimensionally-constrained relativistic mean field (MDC-RMF) model, with functionals PC-PK1 and DD-ME2. Pairing correlations are treated in the BCS approximation with a separable pairing force of finite range. Two-dimensional PES's of 226,228,230,232^{226,228,230,232}Th and 232,234,236,238^{232,234,236,238}U are mapped and the third minima on these surfaces are located. Then one-dimensional potential energy curves along the fission path are analyzed in detail and the energies of the second barrier, the third minimum, and the third barrier are determined. DD-ME2 predicts the occurrence of a third barrier in all Th nuclei and 238^{238}U. The third minima in 230,232^{230,232}Th are very shallow, whereas those in 226,228^{226,228}Th and 238^{238}U are quite prominent. With PC-PK1 a third barrier is found only in 226,228,230^{226,228,230}Th. Single-nucleon levels around the Fermi surface are analyzed in 226^{226}Th, and it is found that the formation of the third minimum is mainly due to the Z=90Z=90 proton energy gap at β201.5\beta_{20} \approx 1.5 and β300.7\beta_{30} \approx 0.7. The possible occurrence of a third barrier in actinide nuclei depends on the effective interaction used in multidimensional CDFT calculations. More pronounced minima are predicted by the DD-ME2 functional, as compared to the functional PC-PK1. The depth of the third well in Th isotopes decreases with increasing neutron number. The origin of the third minimum is due to the proton Z=90Z=90 shell gap at relevant deformations.Comment: 10 pages, 7 figures; Phys. Rev. C, in press; due to the limitation "The abstract field cannot be longer than 1,920 characters", the abstract appearing here is slightly shorter than that in the PDF fil

    A multi-wavelength observation and investigation of six infrared dark clouds

    Full text link
    Context. Infrared dark clouds (IRDCs) are ubiquitous in the Milky Way, yet they play a crucial role in breeding newly-formed stars. Aims. With the aim of further understanding the dynamics, chemistry, and evolution of IRDCs, we carried out multi-wavelength observations on a small sample. Methods. We performed new observations with the IRAM 30 m and CSO 10.4 m telescopes, with tracers HCO+{\rm HCO^+}, HCN, N2H+{\rm N_2H^+}, C18O{\rm C^{18}O}, DCO+^+, SiO, and DCN toward six IRDCs G031.97+00.07, G033.69-00.01, G034.43+00.24, G035.39-00.33, G038.95-00.47, and G053.11+00.05. Results. We investigated 44 cores including 37 cores reported in previous work and seven newly-identified cores. Toward the dense cores, we detected 6 DCO+^+, and 5 DCN lines. Using pixel-by-pixel spectral energy distribution (SED) fits of the Herschel\textit{Herschel} 70 to 500 μ\mum, we obtained dust temperature and column density distributions of the IRDCs. We found that N2H+{\rm N_2H^+} emission has a strong correlation with the dust temperature and column density distributions, while C18O{\rm C^{18}O} showed the weakest correlation. It is suggested that N2H+{\rm N_2H^+} is indeed a good tracer in very dense conditions, but C18O{\rm C^{18}O} is an unreliable one, as it has a relatively low critical density and is vulnerable to freezing-out onto the surface of cold dust grains. The dynamics within IRDCs are active, with infall, outflow, and collapse; the spectra are abundant especially in deuterium species. Conclusions. We observe many blueshifted and redshifted profiles, respectively, with HCO+{\rm HCO^+} and C18O{\rm C^{18}O} toward the same core. This case can be well explained by model "envelope expansion with core collapse (EECC)".Comment: 24 pages, 11 figures, 4 tables. To be published in A&A. The resolutions of the pictures are cut dow

    Nuclear superfluidity for antimagnetic rotation in 105^{105}Cd and 106^{106}Cd

    Full text link
    The effect of nuclear superfluidity on antimagnetic rotation bands in 105^{105}Cd and 106^{106}Cd are investigated by the cranked shell model with the pairing correlations and the blocking effects treated by a particle-number conserving method. The experimental moments of inertia and the reduced B(E2)B(E2) transition values are excellently reproduced. The nuclear superfluidity is essential to reproduce the experimental moments of inertia. The two-shears-like mechanism for the antimagnetic rotation is investigated by examining the shears angle, i.e., the closing of the two proton hole angular momenta, and its sensitive dependence on the nuclear superfluidity is revealed.Comment: 14 pages, 4 figure

    Negative entanglement measure for bipartite separable mixed states

    Full text link
    We define a negative entanglement measure for separable states which shows that how much entanglement one should compensate the unentangled state at least for changing it into an entangled state. For two-qubit systems and some special classes of states in higher-dimensional systems, the explicit formula and the lower bounds for the negative entanglement measure have been presented, and it always vanishes for bipartite separable pure states. The negative entanglement measure can be used as a useful quantity to describe the entanglement dynamics and the quantum phase transition. In the transverse Ising model, the first derivatives of negative entanglement measure diverge on approaching the critical value of the quantum phase transition, although these two-site reduced density matrices have no entanglement at all. In the 1D Bose-Hubbard model, the NEM as a function of t/Ut/U changes from zero to negative on approaching the critical point of quantum phase transition.Comment: 6 pages, 3 figure

    Rotational properties of the superheavy nucleus 256Rf and its neighboring even-even nuclei in particle-number conserving cranked shell model

    Full text link
    The ground state band was recently observed in the superheavy nucleus 256Rf. We study the rotational properties of 256Rf and its neighboring even-even nuclei by using a cranked shell model (CSM) with the pairing correlations treated by a particle-number conserving (PNC) method in which the blocking effects are taken into account exactly. The kinematic and dynamic moments of inertia of the ground state bands in these nuclei are well reproduced by the theory. The spin of the lowest observed state in 256Rf is determined by comparing the experimental kinematic moments of inertia with the PNC-CSM calculations and agrees with previous spin assignment. The effects of the high order deformation varepsilon6 on the angular momentum alignments and dynamic moments of inertia in these nuclei are discussed.Comment: 7 pages, 6 figures; References and discussion about the cranking Nilsson model added, Fig. 3 modified and Figs. 5 and 6 added; Phys. Rev. C, in pres
    corecore