52 research outputs found

    Essential role of liquid phase on melt-processed GdBCO single-grain superconductors

    Full text link
    RE-Ba-Cu-O (RE denotes rare earth elements) single-grain superconductors have garnered considerable attention owning to their ability to trap strong magnetic field and self-stability for maglev. Here, we employed a modified melt-growth method by adding liquid source (LS) to provide a liquid rich environment during crystal growth. It further enables a significantly low maximum processing temperature (Tmax) even approaching peritectic decomposition temperature. This method was referred as the liquid source rich low Tmax (LS+LTmax) growth method which combines the advantage of Top Seeded Infiltration Growth (TSIG) into Top Seeded Melt-texture Growth (TSMG). The LS+LTmax method synergistically regulates the perfect appearance and high superconducting performance in REBCO single grains. The complementary role of liquid source and low Tmax on the crystallization has been carefully investigated. Microstructure analysis demonstrates that the LS+LTmax processed GdBCO single grains show clear advantages of uniform distribution of RE3+ ions as well as RE211 particles. The inhibition of Gd211 coarsening leads to improved pining properties. GdBCO single-grain superconductors with diameter of 18 mm and 25 mm show maximum trapped magnetic field of 0.746 T and 1.140 T at 77 K. These trapped fields are significantly higher than those of conventional TSMG samples. Particularly, at grain boundaries with reduced RE211 density superior flux pinning performance has been observed. It indicates the existence of multiple pinning mechanisms at these areas. The presented strategy provides essential LS+LTmax technology for processing high performance single-grain superconductors with improved reliability which is considered important for engineering applications

    Flux jump-assisted pulsed field magnetisation of high-JcJ_c bulk high-temperature superconductors

    Get PDF
    Investigating, predicting and optimising practical magnetisation techniques for charging bulk superconductors is a crucial prerequisite to their use as high performance ‘psuedo’ permanent magnets. The leading technique for such magnetisation is the pulsed field magnetisation (PFM) technique, in which a large magnetic field is applied via an external magnetic field pulse of duration of the order of milliseconds. Recently ‘giant field leaps’ have been observed during charging by PFM: this effect greatly aids magnetisation as flux jumps occur in the superconductor leading to magnetic flux suddenly intruding into the centre of the superconductor. This results in a large increase in the measured trapped field at the centre of the top surface of the bulk sample and full magnetisation. Due to the complex nature of the magnetic flux dynamics during the PFM process, simple analytical methods, such as those based on the Bean critical state model, are not applicable. Consequently, in order to successfully model this process, a multi-physical numerical model is required, including both electromagnetic and thermal considerations over short time scales. In this paper, we show that a standard numerical modelling technique, based on a 2D axisymmetric finite-element model implementing the HH-formulation, can model this behaviour. In order to reproduce the observed behaviour in our model all that is required is the insertion of a bulk sample of high critical current density, JcJ_c. We further explore the consequences of this observation by examining the applicability of the model to a range of previously reported experimental results. Our key conclusion is that the ‘giant field leaps’ reported by Weinstein et al\textit{et al} and others need no new physical explanation in terms of the behaviour of bulk superconductors: it is clear the ‘giant field leap’ or flux jump-assisted magnetisation of bulk superconductors will be a key enabling technology for practical applications

    Factors Affecting the Growth of Multiseeded Superconducting Single Grains

    Get PDF
    © 2016 American Chemical Society.Single grain, rare earth-barium-copper oxide [(RE)BCO] bulk superconductors, fabricated either individually or assembled in large or complicated geometries, have a significant potential for a variety of potential engineering applications. Unfortunately, (RE)BCO single grains have intrinsically very low growth rates, which limits the sample size that may be achieved in a practical, top seeded melt growth process. As a result, a melt process based on the use of two or more seeds (so-called multiseeding) to control the nucleation and subsequent growth of bulk (RE)BCO superconductors has been developed to fabricate larger samples and to reduce the time taken for the melt process. However, the formation of regions that contain non-superconducting phases at grain boundaries has emerged as an unavoidable consequence of this process. This leads to the multiseeded sample behaving as if it is composed of multiple, singly seeded regions. In this work we have examined the factors that lead to the accumulation of non-superconducting phases at grain boundaries in multiseeded (RE)BCO bulk samples. We have studied the microstructure and superconducting properties of a number of samples fabricated by the multiseeded process to explore how the severity of this problem can be reduced significantly, if not eliminated completely. We conclude that, by employing the techniques described, multiseeding is a practical approach to the processing of large high performance superconducting bulk samples for engineering applications.Engineering and Physical Sciences Research Council (Grant ID: EP/K02910X/1

    Self-passivated freestanding superconducting oxide film for flexible electronics

    Full text link
    The integration of high-temperature superconducting YBa2Cu3O6+x (YBCO) into flexible electronic devices has the potential to revolutionize the technology industry. The effective preparation of high-quality flexible YBCO films therefore plays a key role in this development. We present a novel approach for transferring water-sensitive YBCO films onto flexible substrates without any buffer layer. Freestanding YBCO film on a polydimethylsiloxane substrate is extracted by etching the Sr3Al2O6 sacrificial layer from the LaAlO3 substrate. In addition to the obtained freestanding YBCO thin film having a Tc of 89.1 K, the freestanding YBCO thin films under inward and outward bending conditions have Tc of 89.6 K and 88.9 K, respectively. A comprehensive characterization involving multiple experimental techniques including high-resolution transmission electron microscopy, scanning electron microscopy, Raman and X-ray Absorption Spectroscopy is conducted to investigate the morphology, structural and electronic properties of the YBCO film before and after the extraction process where it shows the preservation of the structural and superconductive properties of the freestanding YBCO virtually in its pristine state. Further investigation reveals the formation of a YBCO passivated layer serves as a protective layer which effectively preserves the inner section of the freestanding YBCO during the etching process. This work plays a key role in actualizing the fabrication of flexible oxide thin films and opens up new possibilities for a diverse range of device applications involving thin-films and low-dimensional materials.Comment: 22 pages,4 figures,references adde

    Composite stacks for reliable > 17 T trapped fields in bulk superconductor magnets

    Get PDF
    Funder: Siemens AG Corporate Technology eAircraftAbstract: Trapped fields of over 20 T are, in principle, achievable in bulk, single-grain high temperature cuprate superconductors. The principle barriers to realizing such performance are, firstly, the large tensile stresses that develop during the magnetization of such trapped-field magnets as a result of the Lorentz force, which lead to brittle fracture of these ceramic-like materials at high fields and, secondly, catastrophic thermal instabilities as a result of flux movement during magnetization. Moreover, for a batch of samples nominally fabricated identically, the statistical nature of the failure mechanism means the best performance (i.e. trapped fields of over 17 T) cannot be attained reliably. The magnetization process, particularly to higher fields, also often damages the samples such that they cannot repeatedly trap high fields following subsequent magnetization. In this study, we report the sequential trapping of magnetic fields of ∌ 17 T, achieving 16.8 T at 26 K initially and 17.6 T at 22.5 K subsequently, in a stack of two Ag-doped GdBa2Cu3O7-ÎŽ bulk superconductor composites of diameter 24 mm reinforced with (1) stainless-steel laminations, and (2) shrink-fit stainless steel rings. A trapped field of 17.6 T is, in fact, comparable with the highest trapped fields reported to date for bulk superconducting magnets of any mechanical and chemical composition, and this was achieved using the first composite stack to be fabricated by this technique. These post-melt-processing treatments, which are relatively straightforward to implement, were used to improve both the mechanical properties and the thermal stability of the resultant composite structure, providing what we believe is a promising route to achieving reliably fields of over 20 T

    Evaluation of individual and ensemble probabilistic forecasts of COVID-19 mortality in the United States

    Get PDF
    Short-term probabilistic forecasts of the trajectory of the COVID-19 pandemic in the United States have served as a visible and important communication channel between the scientific modeling community and both the general public and decision-makers. Forecasting models provide specific, quantitative, and evaluable predictions that inform short-term decisions such as healthcare staffing needs, school closures, and allocation of medical supplies. Starting in April 2020, the US COVID-19 Forecast Hub (https://covid19forecasthub.org/) collected, disseminated, and synthesized tens of millions of specific predictions from more than 90 different academic, industry, and independent research groups. A multimodel ensemble forecast that combined predictions from dozens of groups every week provided the most consistently accurate probabilistic forecasts of incident deaths due to COVID-19 at the state and national level from April 2020 through October 2021. The performance of 27 individual models that submitted complete forecasts of COVID-19 deaths consistently throughout this year showed high variability in forecast skill across time, geospatial units, and forecast horizons. Two-thirds of the models evaluated showed better accuracy than a naĂŻve baseline model. Forecast accuracy degraded as models made predictions further into the future, with probabilistic error at a 20-wk horizon three to five times larger than when predicting at a 1-wk horizon. This project underscores the role that collaboration and active coordination between governmental public-health agencies, academic modeling teams, and industry partners can play in developing modern modeling capabilities to support local, state, and federal response to outbreaks

    The United States COVID-19 Forecast Hub dataset

    Get PDF
    Academic researchers, government agencies, industry groups, and individuals have produced forecasts at an unprecedented scale during the COVID-19 pandemic. To leverage these forecasts, the United States Centers for Disease Control and Prevention (CDC) partnered with an academic research lab at the University of Massachusetts Amherst to create the US COVID-19 Forecast Hub. Launched in April 2020, the Forecast Hub is a dataset with point and probabilistic forecasts of incident cases, incident hospitalizations, incident deaths, and cumulative deaths due to COVID-19 at county, state, and national, levels in the United States. Included forecasts represent a variety of modeling approaches, data sources, and assumptions regarding the spread of COVID-19. The goal of this dataset is to establish a standardized and comparable set of short-term forecasts from modeling teams. These data can be used to develop ensemble models, communicate forecasts to the public, create visualizations, compare models, and inform policies regarding COVID-19 mitigation. These open-source data are available via download from GitHub, through an online API, and through R packages
    • 

    corecore