280 research outputs found

    Rapid access to phospholipid analogs using thiol-yne chemistry.

    Get PDF
    Phospholipids and glycolipids constitute an essential part of biological membranes, and are of tremendous fundamental and practical interest. Unfortunately, the preparation of functional phospholipids, or synthetic analogs, is often synthetically challenging. Here we utilize thiol-yne click chemistry methodology to gain access to phospho- and glycolipid analogs. Alkynyl hydrophilic head groups readily photoreact with numerous thiol modified lipid tails to yield the appropriate dithioether phospho- or glycolipids. The resulting structures closely resemble the structure and function of native diacylglycerolipids. Dithioether phosphatidylcholines (PCs) are suitable for forming giant unilamellar vesicles (GUV), which can be used as vessels for cell-free expression systems. The unnatural thioether linkages render the lipids resistant to phospholipase A2 hydrolysis. We utilize the improved stability of these lipids to control the shrinkage of GUVs composed of a mixture of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) and dioleyl-dithioether PC, concentrating encapsulated nanoparticles. We imagine that these readily accessible lipids could find a number of applications as natural lipid substitutes

    Systematical research on the aerodynamic noise of the high-lift airfoil based on FW-H method

    Get PDF
    In numerical computation of aerodynamic noises, the solution accuracy of flow fields has an obvious impact on detailed computation of eddy turbulence and acoustic results. In this paper, LES (Large Eddy Simulation) was used to conduct numerical simulation of flow fields of three-dimensional high-lift L1T2 airfoil. Unsteady flow field data on the solid wall face was extracted as the noise source. The integration method FW-H (Ffowcs Williams-Hawkings) was used to compute far-field noises. The numerical computation method was verified by experiments. Results show that: the numerical computation method used in this paper can provide an accurate solution for computing far-field aerodynamic noises. Finally, based on the verified numerical model, contribution amounts made by each high-lift airfoil component to noises as well as major factors affecting aerodynamic noises were analyzed. Computational results show that: the leading edge slats generated aerodynamic noises mainly because of the unsteady waves which were caused by the grooves between the slat and main wing, as well as small wake eddies generated on the trailing edge of slats; flaps generated aerodynamic noises mainly because of mixing between high-frequency small-scale eddies and low-frequency large-scale eddies caused by flow separation around the wing flaps. Acoustic directivity of leading edge slats and trailing edge flaps showed an obvious dipole characteristic. For both of them, the sound pressure levels reached the maximum value in the direction perpendicular to the chord line

    Evolution from unconventional spin density wave to superconductivity and a novel gap-like phase in NaFe1-xCoxAs

    Full text link
    Similar to the cuprate high TC superconductors, the iron pnictide superconductors also lie in close proximity to a magnetically ordered phase. A central debate concerning the superconducting mechanism is whether the local magnetic moments play an indispensable role or the itinerant electron description is sufficient. A key step for resolving this issue is to acquire a comprehensive picture regarding the nature of various phases and interactions in the iron compounds. Here we report the doping, temperature, and spatial evolutions of the electronic structure of NaFe1-xCoxAs studied by scanning tunneling microscopy. The spin density wave gap in the parent state is observed for the first time, which shows a strongly asymmetric lineshape that is incompatible with the conventional Fermi surface nesting scenario. The optimally doped sample exhibits a single, symmetric energy gap, but in the overdoped regime another asymmetric gap-like feature emerges near the Fermi level. This novel gap-like phase coexists with superconductivity in the ground state, persists deep into the normal state, and shows strong spatial variations. The characteristics of the three distinct low energy states, in conjunction with the peculiar high energy spectra, suggest that the coupling between the local moments and itinerant electrons is the fundamental driving force for the phases and phase transitions in the iron pnictides.Comment: 4 figures + supplementary informatio

    Species-specific and needle age-related responses of photosynthesis in two Pinus species to long-term exposure to elevated CO2 concentration

    Get PDF
    There is, so far, no common conclusion about photosynthetic responses of trees to long-term exposure to elevated CO2. Photosynthesis and specific leaf area (SLA) of 1-year-old and current-year needles in Pinus koraiensis and P. sylvestriformis grown in open-top chambers were measured monthly for consecutive two growing seasons (2006, 2007) after 8-9years of CO2 enrichment in northeastern China, to better understand species-specific and needle age-related responses to elevated CO2 (500μmolmol−1CO2). The light-saturated photosynthetic rates (P Nsat) increased in both species at elevated CO2, but the stimulation magnitude varied with species and needle age. Photosynthetic acclimation to elevated CO2, in terms of reduced V cmax (maximum carboxylation rate) and J max (maximum electron transport rate), was found in P. koraiensis but not in P. sylvestriformis. The photosynthetic parameters (V cmax, J max, P Nsat) measured in different-aged needles within each species responded to elevated CO2 similarly, but elevated CO2 resulted in much pronounced variations of those parameters in current-year needles than in 1-year-old needles within each species. This result indicated that needle age affects the magnitude but not the patterns of photosynthetic responses to long-term CO2 enrichment. The present study indicated that different species associated with different physioecological properties responded to elevated CO2 differently. As global change and CO2 enrichment is more or less a gradual rather than an abrupt process, long-term global change experiments with different plant species are still needed to character and better predict the global change effects on terrestrial ecosystem

    Poly[bis­[μ-1,3-bis­(diphenyl­phosphan­yl)propane-κ2 P:P′]-di-μ-thio­cyanato-κ2 S:N;κ2 N:S-disilver(I)]

    Get PDF
    In the title coordination polymer, [Ag2(NCS)2(C27H26P2)2]n, two centrosymmetrically related Ag+ cations are linked by two thio­cyanate anions into binuclear eight-membered macrocycles. The Ag⋯Ag separation within the macrocycle is 5.4400 (6) Å. The distorted tetra­hedral coordination about each metal atom is completed by the P atoms of two bridging 1,3-bis­(diphenyl­phosphan­yl)propane ligands, forming polymeric ribbons parallel to the a axis

    Diversity of House Dust Mite Species in Xishuangbanna Dai, a Tropical Rainforest Region in Southwest China

    Get PDF
    . Purpose. To survey the species diversity of home dust mites (HDM) in Xishuangbanna, a tropical rainforest region in Southwest China. Methods. From August 2010 to January 2011, mite-allergic patients and healthy controls were invited to participate. Dust samples from the patients' homes were collected, and mites in the samples were isolated. Permanent slides were prepared for morphologically based species determination. Results. In total, 6316 mite specimens of morphologically identifiable species were found in 233 dust samples taken from 41 homes. The result shows that the mite family of Pyroglyphidae occupied the highest percentage of the total amount of mites collected, followed by Cheyletidae family. The most common adult Pyroglyphidae mites were Dermatophagoides (D.) farinae, D. pteronyssinus, and D. siboney. The most common mites found from other families were Blomia tropicalis, Tyrophagus putrescentiae, and Aleuroglyphus ovatus. Four main allergenic dust mite species D. farinae, D. pteronyssinus, D. siboney, and Blomia tropicalis were found to be coinhabiting in 6/41 homes. Conclusion. The HDM population in homes in Xishuangbanna, a tropical rainforest region in Southwest China, has its own characteristics. It has rich dust mite species and the dust mite densities do not show significant variation across seasons
    corecore