33 research outputs found

    Two new methods for solving the path‐based stochastic user equilibrium problem

    Get PDF
    In this paper, we present two new methods for the path-based logit stochastic user equilibrium problem, and investigate their convergence properties. First, a two level partial linearization method is proposed. Second, a dual method is developed. Both of these two methods use second order approximation of the objective function. Our novel methods are compared to Damberg's partial linearization method (Damberg, 1996), which is known to be one of the best performing methods. Numerical results on the Sioux Falls and Winnipeg networks show that, if properly scaled, our new methods can significantly improve the performance of Damberg’s method

    Deep Clustering Survival Machines with Interpretable Expert Distributions

    Full text link
    Conventional survival analysis methods are typically ineffective to characterize heterogeneity in the population while such information can be used to assist predictive modeling. In this study, we propose a hybrid survival analysis method, referred to as deep clustering survival machines, that combines the discriminative and generative mechanisms. Similar to the mixture models, we assume that the timing information of survival data is generatively described by a mixture of certain numbers of parametric distributions, i.e., expert distributions. We learn weights of the expert distributions for individual instances according to their features discriminatively such that each instance's survival information can be characterized by a weighted combination of the learned constant expert distributions. This method also facilitates interpretable subgrouping/clustering of all instances according to their associated expert distributions. Extensive experiments on both real and synthetic datasets have demonstrated that the method is capable of obtaining promising clustering results and competitive time-to-event predicting performance

    Capacity constrained stochastic static traffic assignment with residual point queues incorporating a proper node model

    Get PDF
    Static traffic assignment models are still widely applied for strategic transport planning purposes in spite of the fact that such models produce implausible traffic flows that exceed link capacities and predict incorrect congestion locations. There have been numerous attempts in the literature to add capacity constraints to obtain more realistic traffic flows and bottleneck locations, but so far there has not been a satisfactory model formulation. After reviewing the literature, we come to the conclusion that an important piece of the puzzle has been missing so far, namely the inclusion of a proper node model. In this paper we propose a novel path-based static traffic assignment model for finding a stochastic user equilibrium in which we include a first order node model that yields realistic turn capacities, which are then used to determine consistent traffic flows and residual point queues. The route choice part of the model is specified as a variational inequality problem, while the network loading part is formulated as a fixed point problem. Both problems are solved using existing techniques. We illustrate the model using hypothetical examples, and also demonstrate feasibility on large-scale networks

    Value of deep learning models based on ultrasonic dynamic videos for distinguishing thyroid nodules

    Get PDF
    ObjectiveThis study was designed to distinguish benign and malignant thyroid nodules by using deep learning(DL) models based on ultrasound dynamic videos.MethodsUltrasound dynamic videos of 1018 thyroid nodules were retrospectively collected from 657 patients in Zhejiang Cancer Hospital from January 2020 to December 2020 for the tests with 5 DL models.ResultsIn the internal test set, the area under the receiver operating characteristic curve (AUROC) was 0.929(95% CI: 0.888,0.970) for the best-performing model LSTM Two radiologists interpreted the dynamic video with AUROC values of 0.760 (95% CI: 0.653, 0.867) and 0.815 (95% CI: 0.778, 0.853). In the external test set, the best-performing DL model had AUROC values of 0.896(95% CI: 0.847,0.945), and two ultrasound radiologist had AUROC values of 0.754 (95% CI: 0.649,0.850) and 0.833 (95% CI: 0.797,0.869).ConclusionThis study demonstrates that the DL model based on ultrasound dynamic videos performs better than the ultrasound radiologists in distinguishing thyroid nodules

    Robust optimization of distance-based tolls in a network considering stochastic day to day dynamics

    No full text
    This paper investigates the nonlinear distance-based congestion pricing in a network considering stochastic day-to-day dynamics. After an implementation/adjustment of a congestion pricing scheme, the network flows in a certain period of days are not on an equilibrium state, thus it is problematic to take the equilibrium-based indexes as the pricing objective. Therefore, the concept of robust optimization is taken for the congestion toll determination problem, which takes into account the network performance of each day. First, a minimax model which minimizes the maximum regret on each day is proposed. Taking as a constraint of the minimax model, a path-based day to day dynamics model under stochastic user equilibrium (SUE) constraints is discussed in this paper. It is difficult to solve this minimax model by exact algorithms because of the implicity of the flow map function. Hence, a two-phase artificial bee colony algorithm is developed to solve the proposed minimax regret model, of which the first phase solves the minimal expected total travel cost for each day and the second phase handles the minimax robust optimization problem. Finally, a numerical example is conducted to validate the proposed models and methods.Department of Logistics and Maritime Studies2016-2017 > Academic research: refereed > Publication in refereed journalbcr

    Traffic Safety Assessment and Injury Severity Analysis for Undivided Two-Way Highway–Rail Grade Crossings

    No full text
    The safety and reliability of undivided two-way highway–rail grade crossings (HRGCs) are of paramount importance in transportation systems. Utilizing crash data from the Federal Railroad Administration between 2020 and 2021, this study aims to predict crash injury severity outcomes and investigate various factors influencing injury severities. The χ2 test was first used to select variables that were significantly associated with injury outcomes. By employing the eXtreme Gradient Boosting (XGBoost) model and interpretable SHapley Additive exPlanations (SHAP), a cross-category safety assessment that offers an evidence-based hierarchy and statistical inference of risk factors associated with crashes, crossings, vehicles, drivers, and environment was provided for killed, injured, and uninjured outcomes. Some significant predictors overlapped between the killed and injured models, such as old driver, driver was in vehicle, main track, went around the gate, adverse crossing surface, and truck, while the other different significant factors revealed that the model could distinguish between different severity levels. Additionally, the results suggested that the model has varying performances in predicting different injury severities, with the killed model having the highest accuracy of 93.36%. The SHAP dependency plots for the top three features also ensure reliable predictions and inform potential interventions aimed at strengthening traffic safety and risk management practices, such as enhanced warning systems and targeted educational campaigns for older drivers
    corecore