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1. Introduction 
Traffic assignment models are widely used all over the world in transport planning to assist in 
making important decisions with respect to infrastructure investments and project appraisal. 
Even though the (academic) research in traffic assignment is shifting towards dynamic traffic 
assignment, static traffic assignment is still by far the most widely used tool in strategic 
transport planning. While we recognize that dynamic traffic assignment models are able to 
produce much more realistic traffic flows and travel times than static counterparts, they have a 
much higher computational complexity, require more sophisticated calibration techniques, and 
are less scalable. Therefore, we expect that transport planners and policy makers will rely on 
static traffic assignment models for some time because of their ease of use, comprehensibility, 
computational convenience, and mathematical rigor.  

As is well-known, traditional static models make several strong assumptions, resulting in traffic 
flow predictions that are infeasible (flows exceeding the capacity of the road), congestion in the 
wrong locations, and travel times that are implausible. There have been several attempts to 
extend static models to include capacity constraints, however none of these proposed models 
produce realistic traffic flows, queues, and travel times.  

In this paper, we propose a novel capacity constrained static traffic assignment model that aims 
to describe traffic in a much more realistic fashion while maintaining a rigorous analytical 
model and computational tractability. We demonstrate that our model predicts queues in the 
correct locations, which enables more accurate travel time calculations. We achieve this by not 
relying on link performance functions, but rather adopt elements of first order (steady state) 
dynamic models. In particular, we adopt a proper node model, which is an important element 
that is missing in all previous studies. Inclusion of such a node model is key in establishing both 
realistic and consistent turn capacities and flows.  

The main contributions of this paper can be stated as follows. First, we provide an extensive 
literature review of earlier proposed static traffic assignment models that aim to include capacity 
constraints and queues, and show that none of them yield realistic traffic flows and queue 
locations. Secondly, we formulate a novel stochastic capacity constrained static traffic 
assignment model with residual point queues that is able to generate more realistic flows, queue 
locations, and travel times. Thirdly, we propose a relatively simple solution procedure without 
the need to rely on complex algorithms, in contrast to most previous studies. Finally, we 
illustrate the model with several hypothetical examples and demonstrate the feasibility on large 
scale networks using real life case studies. We believe that our novel model formulation is a 
major step towards more realistic steady-state network modeling, consistent with important 
traffic flow principles.  

The outline of the paper is as follows. In Section 2 we provide an overview of the traditional 
static traffic assignment model, and we classify several extensions proposed in the literature to 
include capacity constraints. In Section 3 we formulate our new model, in which we focus on a 
capacity constrained network loading model that is consistent with a proper first order node 
model. Section 4 presents an algorithm for solving our new static traffic assignment model, 
which includes an algorithm for route choice, and an algorithm for network loading. In Section 
5, the model and algorithms are illustrated using hypothetical network examples, but we also 
demonstrate feasibility on large real life networks. In Section 6 we summarize our main findings 
and provide a brief discussion on related topics.  
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2. Static traffic assignment models in the literature 

2.1   Traditional unconstrained models 

In this section, we briefly describe the traditional unconstrained version of the static traffic 
assignment, and introduce notation that we will use in the remainder of the paper. 

Consider a transport network  ,G N A  with a set of nodes N and a set of directed links, A. Let 

R N  denote the set of origins, and S N  the set of destinations. The average travel demand 

over time period [0, ]T  between origin-destination (OD) pair  , ,r s  with r R  and ,s S  is 

assumed to be given by .rsD  We will assume in the remainder of the paper that all demand, 

flows, and capacities are rates, i.e. vehicles per hour. Let rsP  be the (non-empty) set of available 

paths from origin r to destination s, and let 
( , ) rsr s

P P  be the set of all routes between all OD 

pairs. 

Wardrop (1952) defined a user equilibrium in traffic assignment as the situation in which no 
traveler can be better off (i.e., obtain lower travel costs, taking possible congestion delays into 
account) by unilaterally switching routes. Such traffic equilibria can be found by solving 
variational inequality problems (Dafermos, 1980). In this paper, we will adopt the more general 
case of a stochastic user equilibrium (SUE), in which travellers are assumed to take the route 
with the lowest perceived costs (Daganzo and Sheffi, 1977). Fisk (1980) has considered a 
special case of this stochastic user equilibrium, in which the route probabilities are given by a 
conditional logit model (McFadden, 1974), such that flow on route p is given by: 

exp( )
, , ( , ),

exp( )
rs

p
p rs rs

p
p P

c
f D p P r s

c


 




   


 (1) 

where pc  is the cost of route p, and   is a scale parameter (i.e., if 0   then route choice is 

completely random, while if     then route choice is completely deterministic). Let 
[ ]p p Pf f  denote the vector of all route flows. In case of a logit based assignment, *f  is the set 

of stochastic user equilibrium flows if it satisfies the following variational inequality (VI) 
problem (see e.g., Guo et al., 2010; Luo et al., 2012): 

  * * *

( , )

ln( ) 0, ,
rs

p p p p
r s p P

c f f f


      f  (2) 

where *
pc  is the equilibrium route cost (which depends on equilibrium route flows * ),f  and   

is the set of feasible route flows defined by the following two constraints: 

, ( , ),
rs

p rs
p P

f D r s


   (3) 

0, , ( , ).p rsf p P r s     (4) 

Constraint (3) ensures that all travel demand is assigned to a route, and constraint (4) ensures 
nonnegative flows. It is well-known that the original conditional logit model in Equation (1) 
does not properly deal with route overlap, hence adaptations to the model by adding a 
commonality factor (C-logit, see Cascetta et al., 1996) or a path-size factor (Ben-Akiva and 
Bierlaire, 1999) have been proposed. The VI problem formulation in Equation (2) can easily be 
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adjusted accordingly, as shown in Zhou et al. (2012). In this paper we will consider the simple 
logit model in Equation (1), as the focus of this paper is on the network loading part, as 
described below.  

In order to compute the route travel costs ,pc  in general the following relationships are used:  

, , ( , ),p ap a rs
a A

c c p P r s


     (5) 

( ), ,a ac a A  q  (6) 

In Equation (5), additive costs are assumed, such that the route travel costs pc  can be expressed 

as a summation of link costs ac  using link-route incidence indicator ap  (which equals one if 

link a is on route p, and zero otherwise). However, note that the route based problem 
formulation in inequality (2) can handle non-additive costs. In Equation (6), the link costs are 
determined by an explicit or implicit function ( )a   of the link (in)flows [ ] .a a Aq q  

Finally, the following common relationship can be used to provides the link flows necessary to 
calculate the link costs,  

( , )

, .
rs

a ap p
r s p P

q f a A


     (7) 

It is important to note that this equation essentially describes a static network loading procedure. 
In this paper we will mainly focus on replacing this classic network loading model with a much 
more realistic one, due to its increased level of consistency with respect to dynamic network 
loading models. 

Under the conditions (i)     and (ii) separable link travel cost functions, i.e. ( )a a ac q  in 
which the link cost only depends on the flow in the link itself, VI problem (2) can be written as 
the well-known mathematical programming problem (Beckmann et al., 1956): 

0

min ( ) ,
aq

a
a w

w dw


 q
 

subject to constraints (3), (4) and (7).
 

(8) 

In traditional static traffic assignment models, explicit link performance functions ( )a   are 
formulated, such as the widely used BPR (Bureau of Public Roads, 1964) function, 

max
( ) 1 , ,

a

a a
a a a

a a

L q
q a A

v C



 
  
        

 (9) 

where for each link a, aL  is the length (km), max
av  is the maximum speed (km/h), aC  is the 

capacity (veh/h), and a  and a  are parameters that depend on the road type. 

It is important to note that link flows can exceed the link capacities in this unconstrained model 
formulation. Since this is physically not possible, Daganzo (1977a,b) proposed to use a link 
performance function ( )a aq  with an asymptote near capacity, which aims to prevent the link 
flow from exceeding the capacity. The Frank-Wolfe algorithm (Frank and Wolfe, 1956) was 
adopted to solve the problem. Application of asymptotical link performance functions will 
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produce very high travel times in saturated links (Boyce et al., 1981), and therefore does not 
improve the realism of the solution. Alternative models were proposed to include hard capacity 
constraints, as described in the next section. 

2.2   Capacity constrained models 

The traditional formulation of the static traffic assignment problem does not take any explicit 
link capacity constraints into account. All path flows are assumed to be able to pass through 
each link, such that the link flows can be determined by a simple mapping from the path flows, 
given by Equation (7). In order to take into account that each link a  has a limited capacity, the 
following straightforward constraints have to be added,  

, .a aq C a   (10) 

This results in what is called a capacity constrained formulation. Although adding the capacity 
constraints seems natural, it is not consistent with the link travel time functions ( ),a aq  such 
that ‘tricks’ with Lagrange multipliers or penalty functions are needed. Although adding these 
constraints to the problem formulation is easy, conventional solution methods cannot be used 
anymore, making this problem much harder to solve. Furthermore, a feasible solution may no 
longer exist. 

In this type of models, the Lagrange multipliers of the capacity constraints are interpreted as the 
optimal toll charge (Jorgensen, 1963) or steady-state link queues (Payne and Thompson, 1975, 
Smith, 1987). Solution methods of this type of model algorithms can be divided into exterior 
penalty function methods (Hearn, 1980), inner penalty function methods (Inouye, 1987; Nie et 
al., 2004; Prashker and Toledo, 2004; Shahpar et al., 2008), and Lagrange multiplier methods 
(Hearn and Ribera, 1980; Larsson and Patriksson, 1995; Yang and Yagar, 1994, 1995). Bell 
(1995) built a linearly constrained convex minimization model for the capacity constrained logit 
SUE problem, proved that the Lagrange multipliers of his model give the equilibrium delays in 
the network, and proposed an iterative balancing method to solve the problem. Meng et al. 
(2008) studied the general SUE problem with capacity constraints, and developed a Lagrangian 
dual method for the problem.  

Essentially all studies mentioned above have approached the problem from an operations 
research perspective in which the capacity constraints were seen as merely extra side constraints 
to the problem. This results in assignment outcomes in which no queues are formed, but rather 
flows are re-routed to other parts of the network that have sufficient capacity. If insufficient 
capacity is available in the network, a solution does not exist. Such outcomes are again 
unrealistic; as queues do build up, traffic flows can and will not always be rerouted and 
situations can occur where demand actually exceeds capacity.  A somewhat different approach 
has been followed by Marcotte et al. (2004), who extend the hyperpath assignment concept to 
model traffic assignment in networks with rigid finite capacities. In their model, users are 
assigned to strategies which provide at every node, a set of sub-paths and the order of 
preference. The rigid finite capacity assumption is assumed to be a proxy for travel delay and 
the travel cost function is not given in closed form. The model was formulated as a variational 
inequality and various theoretical properties of the model were analyzed. A partial linearization 
method and a projection method were proposed to solve the model.  

Instead of an operations research perspective, others have looked at the problem using traffic 
engineering principles, and adopt the idea of residual queues, as described in the next section.  

2.3   Residual queuing models 

A next step forward was made by models that consider what the literature has called residual 
queues, which is blocked flow that is unable to proceed. In the traditional static models and 
capacity constrained static models is assumed that link inflow equals link outflow (hence, only 
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‘link flow’ was defined). In residual queuing models, more vehicles can flow into the link than 
may exit (during a certain period of time), such that a residual queue appears on the link. 

As before, each link is assumed to have a certain capacity (typically depending on the number 
of lanes, the maximum speed, and the road type), but in residual queuing models often so-called 
link-exit capacities are used, while there are no specific link entrance capacities (and therefore 
usually all flow is assumed to be able to enter a link). Different models determine these exit 
capacities differently. Mostly it is assumed to be equal to the capacity of the link itself, but 
sometimes it is a function of the next link(s). None of the proposed models apply a proper node 
model to determine outflow capacity.     

Bifulco and Crisalli (1998) were among the first to move away from interpreting Lagrange 
multipliers as queuing delays, which they note are not necessarily consistent with what could be 
observed at oversaturated links. They describe a stochastic user equilibrium problem in which 
the network loading is formulated as a fixed point problem. No proper node model is used in 
their model formulation. Lam and Zhang (2000) also investigated the traffic assignment 
problem with constraints on the link-exit capacity by taking residual queues into account. In 
their model, the Lagrange multipliers of the capacity constraints are interpreted as the residual 
queue volumes, and the queuing delay is calculated using the equation given by Akçelik and 
Rouphail (1993). The model is formulated as a mathematical programming problem. The Frank-
Wolfe algorithm that includes a cutoff path operator is developed to solve this model. Nesterov 
and De Palma (1998, 2000, 2003) assume lower bounds on the travel time (free-flow travel 
time) and upper bounds on the flow (link capacity) instead of using link travel time functions. 
They search for stable traffic equilibria in which the fundamental relationship between flow, 
speed, and density holds. Queues longer than the link length are assumed not to occur; hence 
spillback is again not taken into account. A detailed comparison of the model of Nesterov and 
De Palma (1998) and Beckmann et al. (1956) model is given by Chudak et al. (2007). Smith 
(2013) proposed a link-based elastic demand equilibrium model with explicit link-exit 
capacities and explicit queuing delays. They state that their model is between steady state and 
dynamic equilibrium transport models. In this model, link flow is constrained by the maximum 
exit flow. Smith proved that, under very weak conditions, a solution exists, and suggested using 
the alternating direction method of Lv et al. (2007) to solve the model. Blocking back or 
spillback is not considered in this model. Smith et al. (2013) describes an alternative approach 
with explicit link-exit capacities with a spatial queuing model considering no blocking back as 
well as blocking back. They show that if capacity restrictions are handled through prices and the 
queue-storage capacities are large enough, then an equilibrium solution exists.  

Although basically all previously described models have been formulated in a rigorous 
mathematical optimisation problem, there also exist models that are merely described by an 
operational procedure. This offers more flexibility in making the outcomes more realistic, 
however, prevents analysing properties of the model and the solution. Bundschuh et al. (2006) 
developed an operational steady state model that they term quasi-dynamic, as it takes capacity 
constraints and spillback into account. This model has been implemented in VISUM. They use a 
kind of incremental assignment (temporarily keeping route choice fixed), in which iteratively a 
fraction of the travel demand is put on the network. The flow is propagated over the consecutive 
links of a path until the exit capacity of a link is reached. The extra flow on that link will be 
stored in a residual queue in the bottleneck link, and blocked back to upstream links if the queue 
exceeds the storage capacity of the link. Bakker et al. (1994) and 4Cast (2009) developed an 
operational model called QBLOK, which they also termed quasi-dynamic. This operational 
model is used in the Dutch national and regional models. It describes a heuristic procedure that 
ensures that link capacities are not exceeded. Residual queues start, similar to the model of 
Bundschuh et al. (2006), in the bottleneck link, and not upstream this link. Queues longer than 
the link length can occur, such that spillback can be taken into account in this model.  
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While models with residual queues generate more realistic traffic flow than models that simply 
add capacity constraints as described in the previous section, the bottleneck locations are still 
predicted in the wrong locations. This is mainly due to the fact that link-exit capacities are 
considered, which places residual queues inside the bottleneck instead of upstream the 
bottleneck. Further, none of the models consider a proper node model that determines turn 
capacities based on link capacities and travel demand. These turn capacities determine realistic 
link-exit capacities, possibly lower than the link capacity. 

2.4   Comparison of different model types 

In this section we will numerically show the differences in traffic flows and queues of the 
described static model types. Furthermore, we illustrate the major improvement in realism of the 
modeling approach proposed in this paper.  

Consider the simple corridor network in Figure 1, in which link capacities and free-flow travel 
times are given. Further, a travel demand of 4000 veh/h is assumed, and we assume a time 
horizon of one hour. Table 1 shows the static traffic assignment outcomes for the different 
model types, namely the link (in)flows aq  and the number of vehicles in the queue after one 

hour, .aQ  For simplicity we assume that the link lengths are sufficiently long, such that we can 
ignore spillback effects.   

For the traditional unconstrained model, all link flows are 4000 veh/h and the travel times are 
highest in links 3 and 5 (according to the BPR function, as they have the highest 
volume/capacity ratio). No residual queues are predicted.  

Capacity constrained models would typically predict a route flow of 2000 veh/h (according to 
the most restricted capacities) through this corridor. However, since there is no alternative route 
available to direct the remaining 2000 veh/h, the capacity constrained models are unable to find 
a solution. These models are restricted in the sense that they assume that all flow goes through 
the network and do not assume any residual queues.  

Models with residual queues consider link-exit capacities and place the remaining flow on the 
link in a residual queue. For example, 4000 vehicles entered link 2 but only 3000 vehicles exit 
this link after one hour, such that a residual queue of 1000 vehicles remains in link 2. Similarly, 
3000 vehicles enter link 3 but only 2000 vehicle exit, yielding a residual queue of 1000 vehicles 
in link 3. After one hour, only 2000 vehicles flow out of links 4 and 5. High travel times are 
therefore predicted on links 2 and 3.  

What actually happens in real life (i.e., traffic flows that would be predicted if loop detectors 
would measure the inflow of each link) is that 4000 vehicles enter link 1 but only 3000 vehicles 
would enter link 2, forming a residual queue of 1000 vehicles in link 1. From the 3000 vehicles 
flowing into link 2, only 2000 vehicles exit this link, resulting in a residual queue of 1000 
vehicles in link 2. The other links will not have any queues. Therefore, queues and high travel 
times should only occur on links 1 and 2. 

Note that the flows and queues predicted by the different models all differ significantly from 
what actually would happen. This has significant consequences for infrastructure decisions 
based on these forecasts. For example, based on outcomes of the traditional unconstrained 
model, one could draw the conclusion that increasing the capacity of link 5 would significantly 
reduce the travel time on this corridor, while in real life such an extension would have no effect 
on the traffic flows or the travel times.  

 

   

Figure 1: Simple corridor network 

1 6000C  2 3000C  3 2000C  4 3000C  5 2000C 
4000rsD  r s
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Table 1: Outcomes of different static traffic assignment models for simple corridor network 

 Link 1 Link 2 Link 3 Link 4 Link 5 

 1q  1Q  2q  2Q  3q  3Q  4q  4Q  5q  5Q  

Trad. unconstrained  4000 0 4000 0 4000 0 4000 0 4000 0 

Capacity constrained  -- -- -- -- -- -- -- -- -- -- 

Residual queuing  4000 0 4000 1000 3000 1000 2000 0 2000 0 

Actual 4000 1000 3000 1000 2000 0 2000 0 2000 0 

Now consider a second network shown in Figure 2, which has been analyzed in Lam and Zhang 
(2000), in which they aim to illustrate that their model with residual queues provides accurate 
flows and queues. Link capacities and free-flow travel times are listed in the figure. A travel 
demand of 1200 veh/h is assumed and we again consider a time horizon of one hour. Table 2 
presents the predicted link (in)flows and queues, in which we assume a deterministic user 
equilibrium. The delays in residual queues equal the number of vehicles in the queue divided by 
the service rate (i.e., the capacity). For the traditional unconstrained model, a BPR function with 

0.15a   and 4a   is assumed for each link.  

In the unconstrained model, the route flow is distributed between the routes on the top and 
bottom, where the flow on link 3 exceeds the capacity. The capacity constrained model would 
only allow 600 vehicles through the bottom route, and direct the remaining flow to the top route. 
In both cases, all 1200 vehicles would leave the network after one hour. The model with 
residual queues (i.e., the model proposed by Lam and Zhang, 2000) puts the queue inside the 
bottleneck (link 3) and forecast 1140 vehicles to leave the network after one hour. Note that the 
actual flows would again be completely different than predicted by any of these models. 
Namely, a queue would form at the end of link 1, and all travellers (independent on which route 
they take) have to wait in the queue.1 When having reached the end of the queue, there is no 
reason for travellers to choose the top route, as it is longer than the bottom route. Hence, all 
travellers would choose the bottom route. This means that only 600 vehicles exit link 1 and exit 
the network after one hour.  

We have adopted the deterministic user equilibrium example for illustration purposes, but 
clearly the example can be easily extended to a stochastic user equilibrium. In that case, there 
will be some flow on the top route, although the queue in our model will still be predicted on 
link 1 (in contrast to existing models).  

 

Figure 2: Simple two-route network (source: Lam and Zhang, 2000) 

                                                           
 
1 Here we have assumed that there is a first-in-first-out (FIFO) queue, hence no separate queues for each 
turn. This so-called FIFO diverging rule is further discussed in Section 3.3. In case there are (long) 
separate turning lanes, one could adjust the network such that each turning lane is represented by a 
separate link.  

1 1300C  3 600C  4 1300C 
r s

2 600C 

1200rsD 
0.3h 0.35h 0.3h

0.4h
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Table 2: Outcomes of different static traffic assignment models for simple two-route network 

 Link 1 Link 2 Link 3 Link 4 

 1q  1Q  2q  2Q  3q  3Q  4q  4Q  

Traditional unconstrained  1200 0 524 0 676 0 1200 0 

Capacity constrained  1200 0 600 0 600 0 1200 0 

Residual queuing  1200 0 540 0 600 60 1140 0 

Actual 1200 600 0 0 600 0 600 0 

With these two simple examples we show that none of the current static traffic assignment 
models give satisfactory results. The model proposed in this paper predicts the actual flows and 
queues given in Tables 1 and 2 and would therefore constitute a major improvement. The model 
can be defined by adding constraints to the traditional static traffic assignment model, leading to 
a rigorous, elegant, and generic problem formulation, which can be solved efficiently on large 
networks.  

3. Newly proposed model 
The model we propose in this paper is based on the same SUE problem formulation as described 
by VI problem (2), but applies a different network loading procedure. To be more precise, we 
will use relationships (5) and (6), with a specific formulation of the link performance function 

( ),a q  but replace Equation (7) with a capacity constrained mapping from route flows to link 
flows consistent with a first order node model. More precisely, we will replace Equation (7) 
with a fixed point problem that ensures consistency between link flows and link capacities. It is 
important to note that we adopt a route based formulation.  

In our approach in which we adopt a novel static network loading model, we assume all residual 
queues are point queues, which do not have a physical length. This is a common assumption 
made in static models with residual queues. Although realistically representing spillback in 
static models remains a challenge, we believe our proposed model is a major step towards more 
realistic outcomes in static traffic assignment. Bliemer et al. (2012) proposed a post processing 
stage, based on an event-based dynamic link transmission model, that converts the vertical 
queues into physical queues, which can take spillback into account. It is beyond the scope of 
this paper to further discuss such a post processing stage.  

In the next section we describe our new network loading procedure formulated as a fixed point 
problem, which can in principle take any node model into account. Then in Section 3.2 we 
discuss how to calculate the link costs, and in Section 3.3 we will explain our choice of node 
model adopted in this paper.  

3.1   Capacity constrained network loading with residual point queues 

The network loading procedure takes the route flows (demand) as input, and determines the link 
flows (and travel costs) as output. Our capacity constrained network loading procedure consists 
of two main building blocks, namely (i) a node model that computes reduction factors for each 
turn, and (ii) an instantaneous network loading procedure that applies these reduction factors to 
the route flows. 

Let in
nA  denote the set of links flowing into node n, and let out

nA  be the set of links flowing out 

of node n. For each node ,n N  define reduction factors per turn direction, [0,1],ab   where 
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in
na A  and out ,nb A  as the ratio of the actual turn outflow (limited by capacity constraints) and 

the desired turn outflow (i.e., local demand). If 1,ab   then the flow is not capacity constrained 

and all desired flow can flow out. Let apq  be the flow into link a following route p, and let ap  

be the set of turns on path p from the origin to link a. As stated in Bifulco and Crisalli (1998), 
the path-specific link inflow is given by the route flow multiplied by previous reduction factors 
on the route: 

( , )

, , , ( , ),
ap

ap ap p a b rs
a b

q f a A p P r s


   
  

       (11) 

where ap  is the same link-route incidence indicator as defined earlier. For example, consider 

the corridor network in Figure 1. The flow into link 1 is 4000, however, only 3000 can flow out. 
A realistic node model will therefore compute a reduction factor of 12 0.75.   According to 
Equation (11), the flow into link 2 is then 3000, while the outflow is constrained by the capacity 
of link 3 to 2000, hence 23 0.67.   All remaining reduction factors are equal to 1. This yields 
an inflow into link 5 of 4000 0.75 0.67 1 1 2000.      

In general, the reduction factors are obtained from a node model that takes the desired turn 
flows (demand) and the given link capacities (supply) into account. The turn flows from link a 
to link b can be determined from the path-specific link flows by the following definition: 

in out

( , )

, , , .
rs

ab bp ap n n
r s p P

t q a A b A n N


         (12) 

Further, by definition also holds that the link flow is the sum over all relevant path-specific link 
flows, 

( , )

, .
rs

a ap
r s p P

q q a A


     (13) 

In order to keep the model general, we consider a general function ( )n   for each node n that 
computes the reduction factors per turn based on a given node model. In Section 3.3 we will 
discuss the chosen node model. For each node n, the set of reduction factors for all turn 
movements is given by the following implicit function: 

  in out

in out

,
( , , , , ), .

n n

n
ab a b a b n na A b A

t C C a A b A n N     
          (14) 

In other words, the reduction factors per turn are a function of the desired link turn flows 
(demand) and the capacities of all incoming and outgoing links (supply). 

It should be pointed out that the traditional unconstrained model and the residual queuing 
models are special cases of this model formulation by adopting alternative formulations of the 
function ( ).n   In case of the traditional model, which does not have capacity constraints, this 

function always returns the value one, i.e. 1ab   for all turns. In case of previously proposed 
residual queuing models, this function is typically a simple function of the link inflow and 
capacities of the incoming links (i.e., /ab a aC q  ) for all turn directions b. In general, these 
reduction factors are not separable, meaning that they depend not only on the flow on the 
current link, but also on the flows of other links competing for the same capacity. This non-
separability of the reduction factors makes the problem more challenging to solve.  
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We can observe from Equations (11) and (12) that the turn flows depend on the reduction 
factors, while the reduction factors according to Equation (14) depend on the turn flows. Let 

[ ]abtt  and [ ]abα  denote the vectors of turn flows and reduction factors, respectively. We 
can write the flow propagation, as specified by Equations (11)-(13), in the compact form of 

( | ), t α f  where f  is the vector of given route demand flows. Further, we can write the node 
model, as specified in Equation (14), in the compact form of ( | ), α t C  where C  is the vector 
of given link capacities. This yields the following fixed point problem: 

( ( | ) | ).  t t C f  (15) 

The vector of turn flows *t  that satisfies * *( | , ),gt t f C  where g     is the composite 

function, is a solution to the fixed point problem. This also yields reduction factors *,α  such 
that the link flows can be computed by Equations (11) and (13). This problem formulation can 
be viewed as a generalization of the model presented in Bifulco and Crisalli (1998). In Section 4 
we will propose an algorithm for solving this fixed point problem.  

3.2   Link travel times 

Now let us derive the travel time function ( ),a q  which we assume consists of the free-flow 

travel time and the average queuing delay over time period [0, ].T  Although our model is 
general enough to specify different queues per turn, most node models adopt the so-called first-
in-first-out (FIFO) diverging rule (Daganzo, 1995). This results in equal reduction factors for a 
given incoming link to all directions, i.e., ab a   for all turn directions b. In this paper, we will 
adopt the same rule, such that a single queue will form for at each link-exit (see also footnote 1 
and Section 3.3). In the remainder of the paper we refer to link reduction factors ,a  noting that 
they apply to all turn directions. The (vertical) queues at time instant 0 equal zero, while the 
queues for each link at time instant T can be computed as  

(1 ) .a a aQ q T   (16) 

Hence, the average queue length at the end of the link is 1
2 Q

a
. The outflow (service) rate 

(veh/h) for each link is given by .a aq  Hence, the average queuing delay is equal to the average 

queue length divided by the outflow rate, 1 1
2 2/( ) (1 ) / .a a a a aQ q T     Since we have assumed 

a point queue that does not have a physical length, we can compute the travel time by summing 
the free-flow travel time, ff ( ),a aq  and the average queuing delay, i.e., 

ff 1
( ) ( ) .

2
a

a a a
a

q T


 



 q  (17) 

Clearly, if the flow is not capacity constrained, 1,a   which results in ff ( )a a aq   (free-flow 
travel time). It is further important to note that the travel time depends on the length of the 
considered time period, T, in contrast to existing static models. This makes sense, as there will 
be twice as many vehicles in the queue if the time period is twice as long, because queues are 
not stationary. This is a subtle but important difference with existing models. 

The free-flow travel time ff ( )a aq  is a function of the link (in)flow .aq  One could use the BPR 
function as specified in Equation (9), noting that in our model the link flow will never exceed 
capacity and therefore the link travel time will be between max/a aL v  and crit/ ,a aL v where 

crit max (1 )a a av v    is the critical speed at capacity. In this paper, we propose to use the free-
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flowing part of what we call the Quadratic-Linear (QL) fundamental diagram in which the flow 
in the free-flowing part is quadratic with respect to density, ,ak  and linear in the congested part 
(see Figure 3(a)): 

crit
max crit

crit max
a

crit
crit max

max crit

1
1 1 , if  0 ,

v
( )

1 , if  ,

a
a a a a a

a
a a

a a
a a a a

a a

v
v k k k k

k
q k

k k
C k k k

k k

   
           

       

 (18) 

where the jam density is defined as max ,ak  while the critical density is defined by crit crit/ .a a ak C v  

If crit max ,a av v  the QL fundamental diagram simplifies to the well-known triangular fundamental 
diagram (Newell, 1993). In that case, the free-flow travel time would be flow independent, 
namely ff max/ .a a aL v   We would argue that assuming that the critical speed is the same as the 
maximum speed is not realistic (e.g., on a 120km/h motorway, the critical speed at capacity is 
around 80km/h), and even though the QL diagram looks similar to the triangular diagram, it 
would generate very different and significantly more realistic travel times in the free-flowing 
part as shown in Figure 3(b). The corresponding travel time function derived from the QL 
fundamental diagram is 

ff

crit
max max max

max max
a

2
( ) .

4
1

v

a
a a

a a
a a a

a

L
q

q v
v v v

k

 
  

       

 
(19) 

 

            (a)                                    (b) 

Figure 3: The QL fundamental diagram (a) and related travel time function (b) 

3.3   Adopted generic first order node model 

Several macroscopic stationary (first order) node models have been proposed in the literature. 
Tampère et al. (2011) provided a list of requirements that are necessary for node models to 
produce consistent and realistic results, namely (i) general applicability (i.e., can handle cross-
nodes with any number of incoming and outgoing links), (ii) maximizing flows, (iii) non-
negativity, (iv) conservation of vehicles, (v) satisfying demand and supply constraints, (vi) 
obeying conservation of turning fractions (CTF), and (vii) satisfaction of the invariance 
principle (Lebacque and Khoshyaran, 2005).  

aC

jam
akcrit

ak
ak

QL

BPR

Triangular

aq

aq
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ff
a

aC

max
a

a

L

v

crit
a

a

L

v
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Daganzo (1995) proposed models for merges and diverges, but not general cross-nodes. Diverge 
nodes follow simple first-in-first-out (FIFO) diverging rules (Daganzo, 1995), while merge 
nodes are somewhat more complex and require a parameter for the merging priority. Jin and 
Zhang (2003) introduced the fair merging rule, which can be defined as a capacity proportional 
distribution for congested upstream links. Jin and Zhang (2004) proposed a model for general 
cross-nodes, however, the model does not satisfy the CTF condition. Bliemer (2007) provided a 
direct extension of the merge and diverge node models of Daganzo (1995) to general cross-
nodes, however, the model does not satisfy the invariance principle. Jin (2012a) investigated 
stationary states for diverge and merge networks, but no cross-node formulation is given. Jin 
(2012b) proposes a closed form invariant model for general cross-nodes, although it does not 
satisfy all requirements outlined above.  

Tampère et al. (2011) and Flötteröd and Rohde (2011) propose models for general cross-nodes 
that satisfy all requirements. Gibb (2011) proposes an alternative formulation that also satisfies 
all requirements but is more computationally demanding to solve.  

In this paper we adopt the node model proposed in Tampère et al. (2011), which satisfies all 
requirements, although we would like to point out that our formulation can handle essentially 
any node model, as our formulation in Section 3.1 is generic. Appendix A outlines a condensed 
version of the iterative procedure that Tampère et al. (2011) describe for generating reduction 
factors consistent with their node model requirements.  

4. Solution algorithm 
In this section we present algorithms for finding a stochastic user equilibrium solution. It is a bi-
level simulation based algorithm, in which at the outer level we solve the route choice problem, 
defined by VI problem (2), while at the inner level we solve our capacity constrained static 
network loading model with residual point queues, defined by fixed point problem (15). 

4.1   Algorithm for solving the route choice problem 

The route choice problem defined in inequality (2) is different from most formulations that 
focus on finding a deterministic user equilibrium (DUE). Several efficient algorithms have been 
proposed in the literature to determine a DUE, such origin-based assignment (OBA, Bar-Gera, 
2002), linear user cost equilibrium (LUCE, Gentile and Noekel, 2009), and traffic assignment 
by paired alternative segments (TAPAS, Bar-Gera, 2010). Bar-Gera et al. (2012) notes the 
importance of path proportionality, which becomes even more relevant when including a node 
model.  

We propose the more general notion of a stochastic user equilibrium (SUE) and adopt a logit-
based traffic assignment model, which ensures path proportionality. For the SUE problem, only 
few efficient path-based solution algorithms have been proposed (see Bekhor and Toledo, 2005) 
which mostly rely on gradients of the objective function. Since the travel times in our model 
formulation are given by an implicit function, deriving gradients is not trivial. Our main 
contribution is on the network loading part, hence in this paper we adopt the well-known but 
simple method of successive averages (MSA, Sheffi and Powell, 1982) for iteratively finding a 
stochastic user equilibrium solution. Liu et al. (2009) proposed some variations of MSA that 
may be more efficient.  

An initial route set is input into the algorithm. This may contain only a single fastest route per 
OD pair, or can include multiple routes per OD pair. We would like to point out that using a 
large initial route set that contains multiple (relevant) routes per OD pair will speed up 
convergence, particularly in heavily congested networks. We adopt a stochastic route choice 
generator as proposed in Fiorenzo-Catalano et al. (2004), which will determine multiple routes 
per OD pair. This route set generation procedure is able to produce route sets without irrelevant 
alternatives, which is an important feature in logit based route choice models (see Bliemer and 
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Bovy, 2008). The initial route set may not include all relevant routes, hence updating the route 
set with newly found fastest routes after each iteration in the assignment may be necessary.  

In order to check whether convergence has been reached, we adopt a gap function. Because we 
search for an SUE, we cannot apply existing gap functions that have been developed for DUEs 
as they are unable to identify convergence towards an SUE. Instead, we propose a new gap 
function geared towards the properties of an SUE. 

Define for each OD pair, 
  
 rs  min

pPrs
( i ) cp  ln( f p ) ,

 
where ( )i

rsP  is the route set at the end of 

iteration i, including the actual fastest route. By taking the logarithm of Equation (1), it follows 
that for each OD pair ( , ),r s  all routes ( )i

rsp P  have the same value c
p
 ln( f

p
)  

rs
. This 

leads to the following relative gap function for each iteration i that will reach zero upon 
convergence: 

 ( )( , )( )

( , )

ln( )
.

i
rs

p p p rsr s p Pi

rs rsr s

f c f
G

D

 




 

 


 (20) 

Algorithm (outer level)  

Input: Initial route sets (0)
rsP  and travel demand rsD  for each OD pair ( , ),r s assignment maps 

,ap  and link characteristics.  

Step 0:  Initialisation. Assume an empty network, i.e., (0) 0aq   for all ,a A  and (0) 0pf   for 

all (0) .rsp P  Further, assume that all reduction factors are equal to one (no 

constraints), i.e., 1a   for all ,a A  and set all link costs to free-flow costs, 
(0) ( ),a ac  0  yielding free-flow route costs (0) .pc  Set : 1.i   

Step 1: Determine intermediate route flows. Compute the intermediate route flows ( )if using 
Equation (1). 

Step 2:  Route flow averaging. Compute the new MSA averaged route flows by 

f ( i)  f ( i1)  1
i (f ( i)  f ( i1) ).  

Step 3:  Network loading. Solve fixed point problem (15), see Section 4.2, yielding link flows 
( )iq  and reduction factors ( ) .iα  

Step 4:  Travel cost calculation. Compute the link travel times ( )i
a  using Equation (17) and the 

route travel costs ( )i
pc  using Equations (5)-(6).   

Step 5: Route set updating. For each OD pair ( , ),r s  determine the fastest path rs  based on 

link travel times ( )i
a  and update the route set ( ) ( 1): .i i

rs rs rsP P    If ( 1) ,i
rs rsP   then 

set ( ) 0.
rs

if   

Step 6: Convergence check. Calculate the gap ( )iG  using Equation (20). If ( )
1

iG   for some 

pre-determined small 1 0,   then we stop. Otherwise, we set : 1i i   and return to 
Step 1.  
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4.2   Algorithm for solving the network loading problem 

In this section we describe the algorithm for solving the network loading in Step 3 of the outer 
level algorithm. We note that since we may be dealing with very large networks, solving fixed 
point problem (15) requires a very efficient algorithm. An important part of the algorithm is 
determining which links and turns are (potentially) blocked. 

In order to determine which turns may be blocked, we start by performing a normal static traffic 
assignment with 1a   for all links. Then we compute the volume/capacity ratios for each link. 
If a link has a volume/capacity ratio larger than one, it is a potential bottleneck. All turns into a 
potential bottleneck link are therefore potentially blocked. In addition to that, other turns sharing 
the same inlink of directly potentially blocked turns but that do not lead to a directly blocked 
outlink are also (indirectly) potentially blocked. This is because we adopt a node model that 
obeys the FIFO diverging rule and is vital for realistic results. We will illustrate this with an 
example in Section 5.2. We can discard all other turns and the associated reduction factors from 
the fixed point problem (i.e., they are fixed at one). Route flows that do not pass through any 
potentially blocked turns will be assigned as in a traditional unconstrained network loading, 
while for routes passing through one or more potentially blocked turns we determine the 
capacity constrained network loading by solving the fixed point problem. Note that for the fixed 
point problem, we can represent the potentially blocked routes in terms of consecutive 
potentially blocked turns (since setting a reduction factor equal to one is the same as removing 
the reduction factor, see Equation (11)), which greatly reduces the size of the problem. 

Denote the reduced set of potentially blocked routes by P. We iteratively assign all flows on 
routes in this reduced route set with reduction factors resulting from the node model described 
in Tampère et al. (2011) until the reduction factors (and hence the flows) do not change (much) 
anymore between iterations. In that case, a fixed point has been found.  

 

Algorithm (inner level)  

Input: Route set ( ) ,iP route flows ( ) ,if  and link capacities .C   

Step 0:  Initialization. Initialize all turn reduction factors with (0) .α 1  

Step 1: Perform network loading of all routes. For all paths ( ) ,ip P  assign the route flows 
( )if  to the network using Equation (11), calculate the turn flows (0)t  using Equation 

(12), and calculate link flows q  using Equation (13). Set : 1.j   

Step 2: Compute potentially blocked turns. For each link ,b A  if ,b bq C  then link b is a 

potential bottleneck and all turn flows abt  that have a positive flow will be potentially 
blocking, as well as all other turns from a. 

Step 3:  Determine potentially blocked route set. Put all routes that pass through one or more 
potentially blocking turns into the reduced potentially blocking route set .P   

Step 4: Compute turn reduction factors. Using turn flows ( 1)jt  and link capacities ,C  apply 

the node model in Equation (14) to obtain turn reduction factors ( ) .jα   

Step 5:  Compute desired turn flows. For all potentially blocked turns along routes in ,P  

compute the path-specific link flows using ( )jα  and ( )if  in Equation (11) and calculate 
the turn flows ( )jt  using Equation (12). 

Step 6:  Convergence check. If ( ) ( 1)
2

j j  t t  for some 2 0,   then we have converged to a 

fixed point, go to Step 7. Otherwise, we set : 1j j   and return to Step 4. 



Capacity constrained stochastic static traffic assignment with residual point queues 
incorporating a proper node model 
Bliemer, Raadsen, Smits, Zhou and Bell 

 

15 

Step 7: Perform network loading of potentially blocked routes. We do a final network loading 
using route flows ( )if  and reduction factors ( )jα  in order to calculate final link flows 
q  using Equations (11) and (13). Note that we only need to assign flows along routes 

that are in route set ,P  as we can retrieve the route flows assigned over non-blocked 

routes ( ) \ip P P   from Step 1. 

In this algorithm, we perform one complete network loading in Step 1, we cycle through all 
routes in Step 3, and we do an additional network loading of the potentially blocked routes in 
Step 7. These three steps are the most time consuming steps as they require calculations on large 
route sets. This implies that our inner level algorithm has the same computational complexity as 
a traditional static network loading, although the computation time will be in most cases two or 
three times longer. Since the fixed point iterations only involve potentially blocked turns, in 
practical networks they require only little computation time.  

In the algorithm described above, we have used smart ways of reducing the size of the fixed 
point problem, but have further adopted a straightforward fixed point algorithm. Potentially 
further gains in computational efficiency can be achieved by adopting accelerated averaging 
procedures, see e.g. Bottom and Chabini (2001).  

5. Numerical examples and case studies 
In this section we will present some numerical examples on two small hypothesized networks to 
illustrate how the models and algorithms work. The first network (single OD pair with multiple 
routes) has been designed to illustrate predominantly the outer level algorithm, while the second 
network (multiple OD pairs with a single route) has been constructed to be able to illustrate the 
inner level algorithm. Further, we will demonstrate that it is feasible to apply our new 
methodology to large real life networks. For all studies, we assume a 2-hour peak period with a 
given OD matrix (i.e., 2T  ), and we use the proposed QL fundamental diagram for all links. 
The model has been implemented in C++ in the OmniTRANS transport planning software using 
the StreamLine framework. 

5.1   Hypothetical network 1: Single OD pair with multiple routes 

Consider the network in Figure 4, in which there are four routes from origin r to destination s 
with a travel demand of 8000 veh/h. All links are assumed to have a length of 2 km, a maximum 
speed of 100 km/h, and a critical speed (speed at capacity) of 75 km/h. The link capacities are 
stated in Figure 4. The network has been constructed such that it causes severe congestion in the 
network. Our stochastic route set generator was able to find all four routes, which were included 
in the initial route set. Table 3 lists the stochastic user equilibrium solution after 20 iterations, 
using a scale parameter of 7    in the logit model.  

 

 

Figure 4: Hypothetical network with a single OD pair with multiple routes 

 

  

1 8000C  2 2000C  8 1000C 
r s

3 4 4000C C 

8000rsD  5 1000C 

6 7 2000C C 
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Table 3: Route and link flows and costs for the single OD pair network 

route pf  ln( )p pc f   
1q  2q  3q  4q  5q  6q  7q  8q  

1 952 31.84 952 686 -- -- 336 -- -- 112 

2 1824 31.59 1824 1314 -- -- -- 645 645 224 

3 1792 31.59 1792 -- 1291 1291 664 -- -- 221 

4 3432 31.72 3432 -- 2473 2473 -- 1271 1271 442 

Total 8000  8000 2000 3764 3764 1000 1916 1916 1000 

route pc   1c  2c  3c  4c  5c  6c  7c  8c  

1 3.546  0.412 1.081 -- -- 2.027 -- -- 0.027 

2 3.453  0.412 1.081 -- -- -- 0.026 1.907 0.027 

3 3.456  0.412 -- 0.026 0.964 2.027 -- -- 0.027 

4 3.362  0.412 -- 0.026 0.964 -- 0.026 1.907 0.027 

a    0.72 0.49 1.00 0.51 0.33 1.00 0.35 1.00 

 

The route flows can be derived using the travel demand and the logit choice probabilities in 
Equation (1). For example, 7 3.546 7 3.546 7 3.453 7 3.456 7 3.362

1 /( ) 8000 952.f e e e e e                We 
can further see from the table that this result after 20 iterations approximates an SUE, since the 
value of ln( )p pc f   is almost the same for all routes. The solution is converging to a SUE, as 

can be seen in Figure 5 where we have plotted the relative gap defined in Equation (20) on a 
logarithmic scale.  

In the network, there is a diverge node, a cross node, and a merge node. The reduction factors 

a  listed in the table are determined by the node model of Tampère et al. (2011). A reduction 
factor smaller than one implies that there is a queue on that link. Only links 3, 6, and 8 do not 
have a queue. For the diverge, link 2 is the bottleneck with a capacity of 2000, while the desired 
flow is 952+1824 = 2776. Hence, the reduction factor is 1 2000 / 2776 0.72.    For the merge, 
both links 5 and 7 are queuing due to competition for a capacity of only 1000 on link 8. The 
capacity will be distributed according to the proportions of the capacity of links 5 and 7. Hence, 
link 5 gets a capacity of 5 5 7 8/( ) 333,C C C C    and link 7 obtains a capacity of 

7 5 7 8/( ) 667.C C C C    Given the desired flows of 1000 and 1921, this means that the 

reduction factors for links 5 and 7 are 5 333/1000 0.33    and 7 667 /1921 0.35.    For the 
cross-node, the calculation is somewhat more complicated, such that we refer to the algorithm 
provided in Tampère et al. (2011) in order to obtain reduction factors of 0.49 and 0.51 for links 
2 and 4, respectively.  
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Figure 5: Relative gap (logarithmic vertical scale) 

 

The link costs can be computed using Equations (17) and (19). For example, consider link 5, 
which is at capacity. The free-flow travel time for link 5 is f

5 (1000) 2 / 75 0.027,  f  while the 

queuing delay equals 1
5 52 (1 ) / 2 2,     hence the total travel time is 5 0.027 2 2.027.c     

5.2   Hypothetical network 2: Multiple OD pairs with a single route 

Now consider the network in Figure 6, which has three OD pairs – 1 1( , ),r s  2 2( , ),r s  and 3 3( , )r s  – 
each only having a single route. There are three cross-nodes in the network. The network has 
been constructed in such a way that each node is visited by each route, hence each turn 
reduction factor influences the flows in the entire network, which makes this network problem 
non-trivial to solve. We will demonstrate how the fixed point iterations in the inner level 
algorithm rapidly converge to flows that are consistent with the node model. In this network, we 
assume that all link lengths are 1 km, all maximum speeds are 100 km/h, and critical speeds are 
75 km/h. All links have a capacity of 2000 veh/h. The travel demand for each OD pair is 2000 
veh/h, such that the route flows are 1 2 3 2000,f f f    in which route flow pf  corresponds 

with OD pair ( , ).p pr s   
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Figure 6: Hypothetical network with multiple OD pairs with a single route 

 

We will concentrate our analyses on the node on the bottom right, with incoming links 1 and 2 
and outgoing links 3 and 4, noting that the results for the other links are identical due to 
symmetry. Looking at the turn flows for this node, we note that 13t  is influenced by route flow 

2 ,f  turn flow 14t  is influenced by route flow 3 ,f  and turn flow 24t  is influenced by route flow 

1.f  Furthermore, due to capacity constrained flow propagation, turn flows 13t  and 14t  are 

influenced by turn reduction factors at both other nodes. Finally, turns 14t  and 24t  are related 

because they are competing for the same link 4 capacity, while turns 13t  and 14t  are related 
because of the FIFO diverging rule. Hence, there exist many dependencies in this network, 
which makes this simple example interesting to solve.  

Focussing on the bottom right node, in the first stage of the inner level algorithm, we determine 
the potentially bottleneck links and blocked turns by performing an unconstrained network 
loading. This yields a flow of 2000 veh/h on links 2 and 3, and a flow of 4000 veh/h on links 1 
and 4. These latter links are therefore potential bottlenecks. .This means that turns 14t  and 24t  

are potentially directly blocked by this bottleneck, while turn 13t  is indirectly potentially 
blocked due to the FIFO diverging rule.  

Table 4 lists the turn flows and reduction factors until convergence is achieved on the inner 
level algorithm. Using Equations (11) and (12), it follows that 13 5 7 2 ,t f   14 8 3 ,t f  and 

24 1,t f  and from Equation (14) it follows that (considering symmetry of the network) 

7 1 1 13 14 24 1 2 3 4( , , | , , , ),t t t C C C C     and 5 8 2 2 13 14 24 1 2 3 4( , , | , , , ).t t t C C C C        

  

4 2000C 

1 2000C 

3 2000C 

2 2
2000r sD 

3s

1s3r

2r 2s

1r
2 2000C 

5 2000C 

6 2000C 

9 2000C 

7 2000C 

8 2000C 

1 1
2000r sD 

3 3
2000r sD 

13t

24t

14t
1 2000f 
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Table 4: Route and link flows and costs for the multiple OD pair network 

iteration j 1  2  13t  14t  24t  

0 1.0000 1.0000 2000 2000 2000 

1 0.3333 0.6667 444 1333 2000 

2 0.6429 0.5714 735 1143 2000 

3 0.6622 0.6216 823 1243 2000 

4 0.6043 0.6244 755 1249 2000 

5 0.6150 0.6160 758 1232 2000 

6 0.6208 0.6176 767 1235 2000 

7 0.6178 0.6184 764 1237 2000 

8 0.6177 0.6180 763 1236 2000 

9 0.6181 0.6180 764 1236 2000 

 

In the initialization ( 0),j   a normal (unconstrained) static assignment is performed, yielding 

all turn flows equal to 2000 veh/h. The node model by Tampère et al. (2011) yields 1 0.33,   

and 2 0.67,  such that the inflow into link 4 is restricted to 2000 veh/h. The desired turn flows 

are then updated to 13 0.67 0.33 2000 444,t      14 0.67 2000 1333,t     and 24 2000.t   The 
turn flows have stabilized after nine iterations, which yields a solution to our fixed point 
problem in Equation (15). Using the resulting turn reduction factors to conduct the final 
capacity constrained network loading yields link flows 1 5 7 2 8 3 2000,q f f    

2 1 2000,q f   3 5 7 1 2 472,q f     and 4 1 1 8 1 3 2000.q f f      In other words, for each 
route flow of 2000 veh/h that enters a route, only 472 vehicles have arrived after 1 hour while 
the remaining vehicles are waiting in one of the queues on the network.   

5.2   Large real life networks 

Figure 7 shows two real life networks from the Netherlands (networks of the cities of 
Amsterdam and Rotterdam) and two from Australia (networks of the cities Gold Coast and 
Sydney) that we considered. Table 5 presents the size of the networks, where the Amsterdam 
network is the smallest and the Sydney network the largest (for which we generated more than 2 
million routes). The table also states the CPU time for each iteration in the outer (route choice) 
level, which includes applying the logit model (route choice) and solving the fixed point 
problem (network loading). Note that even for large networks, the current prototype 
implementation takes less than 4 minutes per iteration on a standard computer, which is fairly 
fast.  

Consider for example the Sydney network. The CPU times reported in Table 5 are per route 
choice iteration, including calculating the route choice proportions for over 1 million OD  pairs, 
and solving the fixed point capacity constrained network loading problem in the capacity 
constrained traffic assignment submodel. In the first iteration, 1,333 nodes were potentially 
blocked, yielding 1,799,407 blocked routes. This number decreased over the number of route 
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choice iterations, as the travel demand is spread more over routes. The maximum number of 
blocked turns on a single route turned out to be 152. The computations required 3.5 GB of 
RAM. Note that the CPU times are based on a prototype implementation. We can likely achieve 
efficiency gains that will bring down the required CPU time and memory usage. 

 

 

Figure 7: Real life networks 

 

  

Amsterdam Rotterdam

Gold Coast Sydney
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Table 5: Network data, computation time, and memory use 

Network Number 
of TAZs 

Number 
of links 

Number 
of 
nodes 

Number 
of routes 

Number 
of OD 

pairs 

Number 
of 
vehicles 

CPU time 
per 
iteration3 

Amsterdam1  418  9,408   4,281  266,505  275,722  271,772    8 sec. 

Rotterdam1 1,744 17,187   6,422 1,394,853  737,415  260,324   53 sec. 

Gold Coast2 1,067  9,565   2,987 1,221,524  592,856  243,838   70 sec. 

Sydney2 3,264 75,379  30,573 2,394,496 1,045,156 1,569,698  205 sec. 

1 Network and OD matrix kindly provided by Goudappel Coffeng BV, The Netherlands 
2 Network and OD matrix kindly provided by Veitch Lister Consulting Pty Ltd, Australia 
3 Using a notebook computer with Intel Core i7 @ 2.80Ghz running Windows 7 

 

Even though we have not calibrated the OD matrices, inspecting the results of our traffic 
assignment after 20 iterations, we notice in all four case studies that traffic flows are at realistic 
levels and queues appear upstream at expected bottleneck locations. The outcomes seem to be a 
significant improvement over the outcomes of a traditional static traffic assignment model in 
which traffic flows exceed link capacities and delays are predicted in the wrong locations. We 
do note that we have not yet included signalized intersections, which in an urban setting will 
further constrain the turn capacities at intersections. Tampère et al. (2011) propose a relatively 
simple extension of the node model to include such further restrictions on the turn capacities by 
taking the proportion of green time per turn into account. As mentioned earlier, our model 
framework can accept any node model and including signalized intersections is therefore a 
relatively straightforward extension (although data on green times may not be readily available 
in existing static network models).  

6. Conclusions and discussion 

In this paper we have proposed a novel capacity constrained static traffic assignment model with 
residual point queues. Our novel model is able to produce more realistic results compared to 
existing static assignment techniques due to incorporating a proper node model into the network 
loading procedure. Such a node model distributes link capacities to turns more accurately, 
resulting in queue formation in the appropriate locations. To our knowledge, this is the first 
attempt to include proper first order node models into static traffic assignment and obtain 
consistent capacity constrained network flows.  

Our model is route based, adopting a logit based assignment, formulated as a variational 
inequality problem. The capacity constrained network loading model that propagates the flow 
along the routes is formulated as a fixed point problem that can take any node model into 
account. In this paper we have adopted the node model by Tampère et al. (2011), which is a first 
order macroscopic node model that satisfies a list of required properties.  

We have proposed a solution algorithm and illustrated how to apply it to our model on 
hypothetical networks. Further, we demonstrated feasibility on large scale real-life networks. 
We believe that our new model is able to replace existing traditional static traffic assignment 
models, because it offers a way to include capacity constraints more realistically and practically 
than any other static model to date and as a consequence is able to obtain much more realistic 
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traffic flows and travel times, while maintaining a rigorous but elegant mathematical problem 
formulation.  

Clearly, our novel model formulation opens up a whole new stream of research and there are 
still many interesting properties and model extensions to be investigated. We will mention a 
few. First, although we have rigorously formulated our model, we have not investigated solution 
properties like existence and uniqueness, as this is a whole study in itself. We have run the 
model on many networks and implemented several algorithms. In all cases we were able to find 
a solution, and in all cases we found the same solution no matter what algorithm we adopted. 
This gives us confidence that the model and the solution are likely to have nice properties, but 
this remains a subject of further research. Secondly, while our algorithm converged on a series 
of test networks, we have not proven convergence in general. It may be possible to construct 
networks in which our simple inner level algorithm is not able to converge to a fixed point due 
to some interdependencies in the turn flows along routes. It should be noted that such situations 
in general networks are rare. Our algorithm can be adapted to take such dependencies into 
account, but it would lead to a more complex algorithm, which is outside the scope of this 
paper. Thirdly, we have only considered vertical queues in this paper instead of horizontal 
(physical) queues, which may lead to spillback. An extension to include physical queues and 
spillback would move the model away from a static model towards a quasi-dynamic model. 
However, in this paper we already adopted a realistic fundamental diagram instead of standard 
link performance functions, which opens the door to possible extensions that consistently 
include physical queuing without the need to rely on post processing as in Bliemer et al. (2012). 
Fourthly, the node model currently adopted does not take into account internal node constraints. 
The paper by Tampère et al. (2011) touches lightly on the subject and there is other research that 
indicates that including these kinds of constraints can potentially lead to problems in finding 
unique solutions (Corthout et al., 2012). Further research on this subject is needed in order to be 
able to successfully integrate signalized- and other forms of complex intersection 
configurations. Finally, in this paper we have focused on methodology. A closer look at the 
traffic assignment outcomes by comparing predicted traffic flows with link counts and predicted 
travel times with measured travel times in a calibrated model will tell us more about the level of 
improvement over a traditional assignment model, and how it compares to outcomes of dynamic 
assignment models.  
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Appendix A 
Tampère et al. (2011) provide an iterative algorithm for determining the reduction factors a  in 
the case of a general cross-node. In this appendix we provide a quick summary in our own 
notation, and refer to Tampère et al. (2011) for details. The maximum number of iterations 
needed in the algorithm equals the number of links leading into the node n under consideration, 
i.e., the cardinality of the set in .nA  Denote each iteration with index m. Further, let ( )mY  and 

( )mZ  denote the set of inlinks that are either demand constrained or capacity constrained in 
iteration m, respectively, and let ( )mX  contain the inlinks that have not yet been processed in 
iteration m. Assume that turn flows (demand) abt  and all link capacities (supply) aC  and bC  are 

given for each in
na A  and out .nb A  Define the following scaling factor, / .a a abb

C t    

Finally, let ( )m
bR  denote the available capacity of outlink out

nb A  in iteration m. The algorithm 
below describes the iterative process to determine the reduction factors. 

 

Algorithm (node model) 

Step 1:  Initialization. Set : 1m   and set (1) in ,nX A  (1) (1) ,Y Z    and (1) .b bR C  

Step 2: Determine current most restricting outlink. Find 
out

( )

( )

arg min .
n

m

m
b

b A
a ab

a X

R
b

t



 
   
 
 


 

Step 3: Calculate iteration reduction factor. Determine 

( )

( )
( ) .

m

m
m b

a ab
a X

R

t








 

Step 4: Update sets. Update demand constrained set  ( ) ( ) ( )| 0, 1 .m m m
aab

Y a X t       If 

( ) ,mY    then set capacity constrained set to  ( ) ( ) | 0 ,m m
ab

Z a X t    otherwise 

set ( ) .mZ   Update the set of unprocessed inlinks to 

 ( 1) ( ) ( ) ( )\ .m m m mX X Y Z    

Step 5: Determine reduction factors. Set 

( )

( ) ( )

1, if ,   

: , if ,  

, otherwise.

m

m m
a a

a

a Y

a Z  


 
 



 

Step 6: Update remaining outlink capacities. Set 
( ) ( )

( 1) ( )

{ }

,
m m

m m
b b a ab

a Y Z

R R t

 

    for all 

out .nb A   

Step 7:  Termination. If ( 1) ,mX     then stop. Otherwise, set : 1m m   and return to Step 
2. 
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