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Objective: This study was designed to distinguish benign and malignant thyroid

nodules by using deep learning(DL) models based on ultrasound dynamic videos.

Methods: Ultrasound dynamic videos of 1018 thyroid nodules were

retrospectively collected from 657 patients in Zhejiang Cancer Hospital from

January 2020 to December 2020 for the tests with 5 DL models.

Results: In the internal test set, the area under the receiver operating characteristic

curve (AUROC) was 0.929(95% CI: 0.888,0.970) for the best-performing model

LSTM Two radiologists interpreted the dynamic video with AUROC values of 0.760

(95% CI: 0.653, 0.867) and 0.815 (95% CI: 0.778, 0.853). In the external test set, the

best-performing DL model had AUROC values of 0.896(95% CI: 0.847,0.945), and

two ultrasound radiologist had AUROC values of 0.754 (95% CI: 0.649,0.850) and

0.833 (95% CI: 0.797,0.869).

Conclusion: This study demonstrates that the DL model based on ultrasound

dynamic videos performs better than the ultrasound radiologists in distinguishing

thyroid nodules.
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Introduction

Thyroid nodules are common diseases in humans, with an

incidence as high as 68% (1). These nodules are mostly benign with

a good prognosis, requiring only long-term follow-up and monitoring

in the absence of intervention. However, approximately 7–15% of

thyroid nodules are diagnosed as malignant, and some malignant

nodules may cause local invasion, vocal cord paralysis, distant

metastasis, postoperative recurrence, etc. (2) Therefore, the early

detection of thyroid nodules and distinguishing benign from

malignant thyroid nodules contributes to a reasonable treatment

regime for patients and effectively reduces their prognostic risks.

Non-invasive, simple, convenient, and repeatable ultrasonography

is currently the most commonly used imaging method for screening

thyroid nodules in clinical practice (3), and with the upgrading of this

method, the detection rate of thyroid nodules has also increased (4) The

2017 Thyroid Imaging Reporting and Data System (ACR TI-RADS) (5)

is a kind of ultrasound reporting system that enables a standardized

assessment for the grade of malignancy of thyroid nodules, which

effectively standardizes the ultrasound report description and optimizes

the treatment and management measures of thyroid nodules, thus

improving the accuracy in distinguishing benign from malignant

thyroid nodules. However, the clinical diagnosis of thyroid nodules

based on ACR TI-RADS classification is time consuming and often

affected by the subjective experience and interpretation of the

examining physician, providing unstable accuracy (6); hence, such a

diagnosis should be further confirmed by other examinations. The

American Thyroid Association (7) recommends ultrasound-guided

fine-needle aspiration cytology (US-FNA) as a qualitative diagnosis of

suspicious thyroid nodules. This approach is simple and repeatable

with fewer complications and is considered to be the gold standard for

the diagnosis of thyroid nodules. However, it has been pointed out (1,

8) that US-FNA has a misdiagnosis rate of 15–30% and does not fully

clarify the pathological nature of the examined nodules. To this end,

there is an urgent need for a more accurate and safe method to

distinguish benign from malignant thyroid nodules.

In recent years, artificial intelligence (AI) has been more widely

used in medicine with the rapid development of computer

technology, making many impossible tasks in medicine in the past

viable (9–13). As the core technique of AI research, deep learning is

primarily used for classification and prediction, which achieves the

purpose of diagnosis through classifiers by extracting ultrasound

image features, texture analysis, and image segmentation (14,

15).This approach can reveal various disease characteristics that are

not identified by humans in daily practice (16, 17). Some studies (18–

20) have demonstrated that deep learning(DL) models can help

ultrasound radiologists effectively judge suspicious thyroid nodules

at present and distinguish them more accurately. Li (8) used the DL

model to discriminate benign frommalignant thyroid nodules. Sui (1)

developed the Thynet model, which helps ultrasound radiologists

distinguish benign and malignant thyroid nodules more effectively in

the absence offine-needle aspiration. However, in existing studies, DL

models are all based on ultrasonic static images (21), which, although

they have high accuracy, cannot completely simulate the clinical

settings. In real clinical settings, ultrasound radiologists often need

to find nodules and judge their grade of malignancy during dynamic
Frontiers in Oncology 02
scanning of the thyroid gland, but a static image often does not

contain all information of the nodules. Therefore, this study will focus

on whether a deep learning model more in line with clinical settings

can be established based on dynamic videos to distinguish benign

from malignant thyroid nodules.

Based on the above discussion, five deep learning(DL) models

were adopted in this study to distinguish benign and malignant

thyroid nodules based on ultrasound dynamic videos, and their

clinical application value was explored.
Methods

Data source

With informed consent exempted in this study, patient data were

analyzed anonymously, and all personal information was removed from

the final results. The study was approved by the ethics committee of the

hospital and conducted in accordance with the Declaration of Helsinki. In

this study, we retrospectively collected the thyroid nodule cases receiving

surgery from January 2020 to December 2020 from the ultrasound

database of Zhejiang Cancer Hospital. All patients underwent routine

ultrasonography in the Ultrasound Department of the hospital, with

complete dynamic ultrasound video data available. The ultrasonography

was performed using Philips iU 22 and GE E 9 color Doppler ultrasound

diagnostic instruments equipped with 9L-4 linear array probe with a

frequency of 10–12 MHz. All patients were examined in the supine

position with the neck straight. Both sides of the neck were fully exposed,

and the thyroid gland was scanned in the transverse and longitudinal axes.

The acquisition of ultrasound dynamic videos was completed by two

ultrasound radiologists with more than 5 years’ experience.
Inclusion and exclusion criteria

The criteria for nodule cases included in this study were as follows: ①

patients aged > 18 years; ② underwent total or unilateral thyroidectomy

in our hospital; ③ clear pathological results within 1 month after surgery;

④ clear ultrasound dynamic video images retained. The exclusion criteria

were as follows: ① nodule diameter < 3 mm; ② pathological results were

not available or were unclear; ③ video images did not show nodules

clearly or showed them in poor quality; ④ ultrasonography findings

showed inconsistent site or size of the lesion; ⑤ received chemotherapy

and/or radiotherapy such as iodine 131 before ultrasonography. Criteria

for dynamic video saving:① the entire process from the appearance to the

disappearance of the nodule was completely acquired; ② the shape and

surroundings of the nodule were fully exposed during the acquisition; ③

the length of videos acquired was not less than 10 s. All video data were

stored in DICOM format on the hard disk of the machine.

All cases enrolled had clear postoperative pathology.

Postoperative pathological data were provided by the Department

of Pathology, Zhejiang Cancer Hospital. All pathological assessments

were performed based on HE-stained whole-slide images by using

The Bethesda System For Reporting Thyroid Cytopathology

(TBSRTC) (9). Only the nodules with clear pathological types of

Bethesda Class I, II, or VI were included for training.
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Data classification and processing

In this study, thyroid ultrasound dynamic videos of 657 patients

were collected. With some unsatisfactory excluded against the

exclusion criteria, we obtained ultrasound dynamic videos of a total

of 1018 nodules. According to the pathological results, we divided

these videos into benign or malignant nodule groups. In this study,

the total videos were randomly divided into either training or test sets

in a ratio of 7:3, and the test set was subdivided into internal or

external test sets in a ratio of 1:1. A total of 713 videos were used for

model training—153 videos for internal and 152 videos for external

tests (Figure 1). Two attending ultrasound radiologists with more

than 5 years’ working experience read the included nodule videos

separately. In case of any doubt regarding the results, the chief

(associate chief) ultrasound radiologist was available for assistance,

and the comments from this ultrasound radiologist should prevail.

For the processing of thyroid ultrasound videos, we utilized

Python language-based Pydicom and OpenCV packages to read the

raw data in Digital Imaging and Communications in Medicine

(DICOM). After original video data were available, the nodule
Frontiers in Oncology 03
region was extracted first. The extraction of the nodule region in

the video is difficult because there are varying thyroid nodule images

from 300 to 3600 frames in the videos in this data set calculated based

on the varying length of the video from 10 to 120 seconds and a frame

rate of 30 frames per second (Figure 2). It would be both time and

labor consuming for clinicians to mark each frame of the video.

Therefore, the clinician herein selected 1–10 frames with clear nodule

features for each video to mark the nodule region in a rectangle box.

Using this approach has two advantages: first, the clinician does not

need to spend a lot of time marking the nodule region in the video

because only 1–10 frames need to be marked; second, after the nodule

region is marked on a specific frame, the sequence containing a total

of adjacent 60 frames of the marked frame is selected and stitched on

the channel dimension as a video clip.

Because the nodule position changed little within 2 seconds, the

nodule region marking on a specific frame was applicable to its

adjacent frames, thus substantially reducing the physician’s marking

time. One to ten video clips can be obtained by marking one video. To

cover more important tissues and make the model more robust, the

rectangle box of the marked nodule region was expanded herein by
FIGURE 1

Flow chart for inclusion and exclusion criteria.
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1.5 times along the four directions (i.e., up, down, left, right) so that

the marked region can cover more nodules and important features

(22, 23) (Figure 3). Data augmentation, including random translation

(if the bounding box exceeded the frame boundary, it will be

discarded), random cropping, and adding Gaussian noise with a

mean value of 0 and a variance of 1, was used to increase the

diversity of data and avoid the risk of overfitting.

For the selection of static images in the comparative experiment,

the frames with marked nodule regions were trained and tested as

static images herein. All data were standardized by subtracting the

overall mean and dividing by the variance, and they were structured

into TFRecord format to improve the utilization of graphics

processing units and accelerate training.
Frontiers in Oncology 04
We utilized five DL models—DenseNet121 (24), ResNet50 (25),

InceptionV3 (26), long short-term memory (LSTM) (27) and a self-

built small network named Conv4—to model the extracted videos by

category by analyzing and comparing the parameters and structures

of these networks. DL can construct the correct mapping from nodule

video data to classification of benign and malignant nodules based on

a large amount of data by simulating the feature-extraction method of

clinicians. The five networks used herein have their own advantages.

DenseNet121 contains dense connections and has the ability to

efficiently extract features based on fewer parameters; InceptionV3

can extract more complex features due to its network width; ResNet50

can prevent exploding or vanishing gradients via its unique skip-

connection; LSTM is a recurrent neural network that excels at
FIGURE 2

Overall flow chart for DL models deployment.
FIGURE 3

Nodule position on one of the frames was only marked for each video clip, and the marking box for the marking on all frames in the video clip was
appropriately expanded.
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classifying, processing, and predicting long sequence data.; to prevent

network overfitting due to a too-small dataset, a small network

containing only four convolutional layers was constructed herein,

named Conv4. All video clips were resized to 224 × 224 × 60 to meet

the network’s requirement for the same input size before they are

input into the network. The five networks were first iteratively trained

and back-propagated to adjust the parameters based on the training

set, and the parameters were fixed after the network converged and

tested on the internal and external test sets. In the network training,

the video clips from various videos were mixed and randomly input

into the networks; in contrast, in the test stage, to avoid the video clips

from the same nodule video present in both training and test sets, we

utilized the networks to test the video clips from the same video

separately and determined the final classification of this video through

soft voting.

To compare the effects of different networks and training

mechanisms on the identification more effectively, the hyper-

parameters of all experimental groups were unified herein using an

optimized algorithm Adam, with the momentum value set to 0.9, the

initial learning rate set to 0.001, 100 epochs run in each experiment,

the Batchsize set to 128, and the Dropout value set to 0.5. All

experiments herein were implemented by the Keras 2.1.5 and

Tensorflow 1.6.0 frameworks under the Ubuntu16.04 system, using

a host equipped with Intel (R) Core (TM) i7-8700@3.2G and NVIDIA

TITAN V 12GB GPU.
Statistical analysis

The area under the receiver operating characteristic curve

(AUROC) was used herein to demonstrate the ability of each DL

model to distinguish benign frommalignant thyroid nodules based on

videos. In addition, the comprehensive performance of networks was

evaluated based on the sensitivity, specificity, positive predictive value

(PPV), negative predictive value (NPV), and accuracy, and the 95%

CI of each index was calculated using the DeLong method.

Calculation of all indexes and plotting of ROC curves were both
Frontiers in Oncology 05
performed with Python language-based matplotl ib and

sklearn packages.

Moreover, the kappa coefficient was calculated using the criteria

of Landis (28) to evaluate the agreement between the result

predicted by the network and the pathological gold standard. All

calculated P values for 95% CIs were less than 0.05 and were

statistically significant.
Results

In this study, thyroid ultrasound dynamic videos of 653 patients

were collected. The training test set included 90 males and 347

females, with a mean age of 46.59 ± 11.56 years and a mean lump

size of 12.85 ± 11.54 mm. The internal test set included 25 males and

88 females, with a mean age of 47.80 ± 12.31 years and a mean lump

size of 14.25 ± 10.56 mm. The external test set included 29 males and

79 females, with a mean age of 47.30 ± 11.89 years and a mean lump

size of 14.66 ± 11.13 mm (Table 1).

Tables 2–4 and Figure 4 show the comparative performance of the

five CNN models (Conv4, DenseNet121, ResNet50, InceptionV3 and

LSTM) vs. the ultrasound radiologists in distinguishing benign from

malignant thyroid nodules. In the internal test set, the area under the

receiver operating characteristic curve (AUROC) was 0.929(95% CI:

0.888,0.970)for the best-performing model LSTM, 0.927(95% CI:

0.885,0.969)for Conv4,0.876(95% CI: 0.823,0.928)for DenseNet121,

0.896(95% CI: 0.848,0.945) for ResNet50, and0.917(95% CI:

0.873,0.961)for InceptionV3. Two radiologists interpreted the small

video with AUROC values of 0.760 (95% CI: 0.653,0.867) and 0.815

(95% CI: 0.778,0.853), respectively. The five DLs all performed better

than the ultrasound radiologists in identifying thyroid nodules. In

terms of accuracy, sensitivity, and specificity, the best-performing DL

had an accuracy of 91.3%(95% CI: 0.868,0.958), and both radiologists

had an accuracy of 79.3% (95% CI: 0.717,0.863). The sensitivity of the

best-performing DL model was94.5%(95% CI: 0.902,0.988), and the

sensitivity of the radiologists ‘ readings was 82.4% (95% CI: 0.737,

0.911) and 85.1% (95% CI: 0.770,0.932), respectively. For specificity,
TABLE 1 Baseline characteristics.

Training dataset
n=437

Internal dataset
n=113

External dataset
n=108

Age (mean ± SD) 46.59 ± 11.56(23,83) 47.80 ± 12.31 (23, 74) 47.30 ± 11.89 (18, 75)

18–30 46(11%) 12 (11%) 10 (9%)

31–50 216(49%) 51 (45%) 51 (47%)

> 50 175(40%) 50 (44%) 47 (44%)

Sex

Male 90(21%) 25 (22%) 29 (27%)

Female 347(79%) 88 (78%) 79 (73%)

Lump size (mm) 12.85 ± 11.54(3,83) 14.25 ± 10.56 (4,47) 14.66 ± 11.13 (4,58)

3–10 269(62%) 64 (57%) 57 (53%)

11–20 92(21%) 24 (21%) 28 (26%)

> 20 76(17%) 25 (22%) 23 (21%)
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the best-performing DL model was 85.4%(95% CI: 0.745,0.962, and

the specificity of the radiologists was 73.0% (95% CI: 0.587,0.873) and

67.5% (95% CI: 0.524,0.826), respectively. It can be seen that in terms

of accuracy, sensitivity, and specificity, the DL model performed

better than the radiologists. All five models were highly stable, with a

kappa value exceeding 0.05 and a P value less than 0.5. In the external

test set, the best-performing DL model had AUROC values of 0.896

(95% CI: 0.847,0.945), and two ultrasound radiologist had AUROC

values of 0.754 (95% CI: 0.649,0.850) and 0.833 (95% CI: 0.797,0.869).

In terms of accuracy, sensitivity, and specificity, the best-performing

DL algorithm had an accuracy of 91.9%(95% CI: 0.875,0.963), and the

two ultrasound radiologist had an accuracy of 80.4% (95% CI:

0.728,0.879) and 82.2% (95% CI: 0.750,0.895). The sensitivity of the

best-performing DL algorithm was 97.4%(95% CI: 0.945,1.003), and

the sensitivity of the ultrasound radiologists ‘ readings was 82.7%

(95% CI: 0.745, 0.910) and 80.2% (95% CI: 0.716,0.889), respectively.

For specificity, the best-performing DL algorithm was 87.9% (95% CI:
Frontiers in Oncology 06
0.767, 0.990), and the specificity of the ultrasound radiologists was

73.1% (95% CI: 0.560,0.910) and 88.7% (95% CI: 0.762,1.007),

respectively, demonstrating that the DL models trained based on

dynamic videos performed better than the ultrasound radiologists. In

addition, we compared an image screenshot that showed the nodule

position and morphology most clearly in each video with the dynamic

video. In the external test set, the AUROC of the static image was

0.815 (95% CI: 0.778, 0.853), the accuracy was 74.8% (95% CI: 0.705,

0.790), the sensitivity was 74.0% (95% CI: 0.694, 0.787), and the

specificity was 78.2% (95% CI: 0.689, 0.880). In the internal test set,

the AUROC of the static image was 0.833 (95% CI: 0.797, 0.869), the

accuracy was 77.0% (95% CI: 0.729, 0.810), the sensitivity was 77.6%

(95% CI: 0.731, 0.820), and the specificity was 73.9% (95% CI: 0.636,

0.843). It can be concluded that the diagnostic performance of the

static image is not as good as that of the dynamic video in both the

internal and external test sets. This finding indicates that the DL

model trained based on the dynamic video has prominent advantages
TABLE 2 Diagnostic performance of DL model in internal test set.

Conv4 ResNet50 InceptionV3 DenseNet121 LSTM Picture

Accuracy
(95% CI)

0.913 (0.868,0.958) 0.853 (0.797,0.910) 0.873 (0.820,0.927) 0.880 (0.828,0.932) 0.913 (0.868,0.958)
0.770

(0.729, 0.810)

Sensitivity
(95% CI)

0.936 (0.890,0.982) 0.881 (0.820,0.942) 0.899 (0.843,0.956) 0.908 (0.854,0.962) 0.945 (0.902,0.988)
0.776

(0.731, 0.820)

Specificity
(95% CI)

0.854 (0.745,0.962 0.780 (0.654,0.907) 0.805 (0.684,0.926) 0.805 (0.684,0.926) 0.829 (0.714,0.944)
0.739

(0.636, 0.843)

PPV (95% CI) 0.944 (0.901,0.988) 0.914 (0.861,0.968) 0.925 (0.874,0.975) 0.925 (0.875,0.975) 0.936 (0.891,0.982)
0.936

(0.907, 0.965)

NPV (95% CI) 0.833 (0.721,0.946) 0.711 (0.579,0.844) 0.750 (0.622,0.878) 0.767 (0.641,0.894) 0.850 (0.739,0.961)
0.402

(0.316, 0.487)

AUROC (95% CI) 0.927 (0.885,0.969) 0.896 (0.848,0.945) 0.917 (0.873,0.961) 0.876 (0.823,0.928) 0.929 (0.888,0.970) 0.833 (0.797, 0.869)

K (Kappa) 0.783 0.642 0.688 0.702 0.780 0.386

F1 0.940 0.897 0.912 0.917 0.941 0.848

P-value All <0.05
TABLE 3 Diagnostic performance of DL model in external test set.

Conv4 ResNet50 InceptionV3 DenseNet121 LSTM Picture

Accuracy
(95% CI)

0.919 (0.875,0.963) 0.905 (0.858,0.953) 0.905 (0.858,0.953) 0.863 (0.807,0.919) 0.912 (0.867,0.958)
0.748

(0.705, 0.790)

Sensitivity
(95% CI)

0.974 (0.945,1.003) 0.930 (0.884,0.977) 0.913 (0.862,0.965) 0.870 (0.808,0.931) 0.939 (0.895,0.983)
0.740

(0.694, 0.787)

Specificity
(95% CI)

0.727 (0.575,0.879) 0.818 (0.687,0.950) 0.879 (0.767,0.990) 0.839 (0.709,0.968) 0.818 (0.687,0.950)
0.782

(0.685, 0.880)

PPV (95% CI) 0.926 (0.879,0.972) 0.947 (0.906,0.988) 0.963 (0.928,0.999) 0.952 (0.912,0.993) 0.947 (0.906,0.988)
0.943

(0.916, 0.971)

NPV (95% CI) 0.889 (0.770,1.007) 0.771 (0.632,0.911) 0.744 (0.607,0.881) 0.634 (0.487,0.782) 0.794 (0.658,0.930)
0.380

(0.300, 0.460)

AUROC (95% CI) 0.836 (0.776,0.896) 0.895 (0.846,0.945) 0.888 (0.837,0.939) 0.860 (0.804,0.916) 0.896 (0.847,0.945) 0.815 (0.778,0.853)

K (Kappa) 0.750 0.733 0.744 0.634 0.749 0.368

F1 0.949 0.939 0.938 0.909 0.943 0.830

P-value Al l<0.05
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TABLE 4 Performance of radiologists in reading videos.

Internal Test Set External Test Set

Radiologist 1 Radiologist 2 Radiologist 1 Radiologist 2

Accuracy
(95% CI)

0.793
(0.717,0.868)

0.793
(0.717,0.868)

0.804
(0.728,0.879)

0.822
(0.750,0.895)

Sensitivity
(95% CI)

0.824
(0.737,0.911)

0.851
(0.770,0.932)

0.827
(0.745,0.910)

0.802
(0.716,0.889)

Specificity
(95% CI)

0.730
(0.587,0.873)

0.675
(0.524,826)

0.731
(0.560,0.901)

0.886
(0.762,1.007)

PPV(95% CI)
0.859

(0.778,0.940)
0.840

(0.757,0.923)
0.905

(0.839,0.972)
0.956

(0.907,1.004)

NPV (95% CI)
0.675

(0.530,0.820)
0.694

(0.543,0.845)
0.576

(0.407,0.744)
0.590

(0.435,0.744)

AUROC (95% CI)
0.760

(0.653,0.867)
0.815

(0.778,0.853)
0.754

(0.649,0.858)
0.833

(0.797,0.869)

K(Kappa) 0.543 0.531 0.511 0.587

F1 0.841 0.846 0.865 0.872

P-value All < 0.05
F
rontiers in Oncology
 07
A B

DC

FIGURE 4

ROC curves for different models and ultrasound radiologists’ interpretations: (A) ROC curve for 5 DL learning models trained on video clips using internal
test set; (B) ROC curve for models trained on video clips and static images using internal test set; (C) ROC curve for 5 DL models trained on video clips
using external test set; (D) ROC curve for models trained on video clips and static images using external test set.
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over the static image in distinguishing benign and malignant thyroid

nodules in terms of accuracy, sensitivity, and specificity.

In addition, we performed a DeLong test to check the significance

of the differences between the video-based DL model, the static image-

based DL, and the video-based interpretation by the ultrasound

radiologists using the external test set. As shown in Table 4, there

was a significant difference (p < 0.0001) between the five video-based

DL models and the static image-based model, as well as between the

five video-based DL models and the ultrasound radiologists, further

demonstrating that the video-based DL model has specific advantages

over the ultrasound radiologists and the static image-based model in

distinguishing benign from malignant thyroid nodules. For clinical

use, we calculated the model weight, resident memory occupied by the

model while running, and the inference speed of the CPU and GPU

for each model. We calculated the total time required for each model

to perform inference on all test and validation sets and took the

average value. The results are shown in Tables 5 and 6.
Discussion

In this study, DL models were established based on ultrasound

dynamic videos to distinguish between benign and malignant thyroid

nodules more comprehensively. According to the results, the DL

models used herein exhibited high accuracy, sensitivity, and

specificity in distinguishing benign and malignant thyroid nodules

in both the internal and external test sets, which outperformed the

manual interpretation by the ultrasound radiologists.

In recent years, with higher health awareness among people and

more advanced medical devices, the detection rate of thyroid nodules is

increasing, making it one of the most prevalent diseases in humans (29).

Ultrasonography is currently the preferred imaging modality for
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screening thyroid nodules in clinical practice, and the subsequent

treatment plan is based on the ultrasonography result, either

continued follow-up or surgery (30). Thyroid nodules are

characterized by homogeneous echogenicity, indistinct borders, and

varying morphology on different ultrasound instruments, so that

ultrasound radiologists cannot accurately identify them and give

results without differences (31). The manual interpretation herein was

made independently by an ultrasound radiologist, following the advice

of a senior physician if necessary. In the daily work environment,

ultrasound radiologists are often required to independently interpret the

found nodules. Therefore, the interpretation results are frequently

different due to subjective factors and the work experience of the

radiologists, and seeking advice from a senior physician represents a

major expenditure of manpower and effort. DL models have advantages

in addressing heterogeneity because they can extract engineering

features of different nodules and are not limited by the benign and

malignant nodule criteria adopted by physicians in identifying nodule

features, thereby ensuring consistent results. Another advantage of DL

models is that they can interpret the input nodules immediately, which

saves a substantial amount of time and improves clinical work efficiency.

Previous studies have demonstrated the automated identification

capability of DL models. Ko (32) designed three DL models to track and

test 589 thyroid nodules, and the AUROC of the three DL models was

0.845, 0.835, and 0.850, respectively, which was not significantly different

from the AUROC of 0.805–0.860 of the ultrasound radiologists,

demonstrating that the DL models have a comparable diagnostic

capability to ultrasound radiologists. In a multicenter study by Koh

(12), 15375 thyroid nodule ultrasound images were trained with two DL

models in order to compare the performance between the DLmodels and

ultrasound radiologists in distinguishing benign and malignant thyroid

nodules, and results showed that the DL models had similar sensitivity

and higher specificity in identifying thyroid cancer patients compared
TABLE 6 Model weight, model memory and inference time.

Methods DenseNet121 ResNet50 InceptionV3 Conv4 LSTM

Model Weight (GB) 0.0296 0.0954 0.0878 0.0113 0.0248

Resident Memory Usage (GB) 1.1800 1.1622 1.1237 1.1388 3.7143

Inference Time (s)/Clip on CPU 0.1176 0.1075 0.0989 0.0769 0.2100

Inference Time (s)/Clip on GPU 0.0761 0.0521 0.0644 0.0431 0.0667
frontie
TABLE 5 The p-values of the DeLong test for different methods in the external test set.

Methods DenseNet121 ResNet50 InceptionV3 Conv4 LSTM Static Radiologists

DenseNet121 1.0000 0.1238 0.4995 0.2503 0.2034 <0.0001 <0.0001

ResNet50 0.1238 1.0000 0.3831 0.2099 0.3532 <0.0001 <0.0001

InceptionV3 0.4995 0.3831 1.0000 0.5802 0.2964 <0.0001 <0.0001

Conv4 0.2503 0.2099 0.5802 1.0000 0.4925 <0.0001 <0.0001

LSTM 0.2034 0.3532 0.2964 0.4925 1.0000 <0.0001 <0.0001

Static <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 1.0000 0.3559

Radiologists <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 0.3559 1.0000
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with a group of skilled ultrasound radiologists. The DL models were also

used herein for training based on dynamic videos and static images,

respectively. From our findings, it can be seen that all DL models had a

better capability in distinguishing benign andmalignant nodules than the

ultrasound radiologists, whether based on static images or dynamic

videos, demonstrating the automated identification capability of DL

models. Sui (1) simulated real clinical settings and distinguished benign

and malignant thyroid nodules with 500 dynamic videos after the first

round of static image reading. The AUROC increased from 0.862 to

0.873, and then increased to 0.877 after DL models were adopted to

support the interpretation. In this study, dynamic videos were only

included in the manual interpretation stage so as to improve the

ultrasound radiologists’ accuracy by providing more information about

nodules. The models were trained based on dynamic videos to identify

thyroid nodules herein, and the results showed that DL models

performed better than the ultrasound radiologists.

The models selected in the above studies (11, 13) were all trained

based on static ultrasound images. However, in actual clinical practice,

static images cannot completely simulate the clinical setting because

they often do not cover the suspicious features of all nodules (33–35),

potentially leading to some suspicious nodule features being missed,

thus affecting the accuracy of the results. To display more complete

feature information in static images as much as possible, ultrasound

radiologists will spend more time and energy. Therefore, we plan to

eliminate the above disadvantages by training DL models based on

dynamic ultrasound videos (Figure 5). From our findings, it can be seen

that models demonstrated better specificity, sensitivity, and accuracy in

nodule identification in dynamic videos than in static images. DL
models trained based on videos and images both performed better than

the ultrasound radiologists in diagnosing nodules.

The thyroid ultrasound videos used in this study were produced

by several different types of ultrasound instruments, contributing to
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increased data diversity. The thyroid nodules included herein were

not limited to pathological type; this approach improved the clinical

application value to some extent. There are also significant

limitations in this study. First, the total sample size is small. Only

the ultrasound video data within one year in one hospital are

included, and most of the patients in the cohort are from the same

or similar regions and cannot represent the entire population,

causing errors in the study’s results. Therefore, multicenter studies

with more data are required in the future. Second, the malignant

cases in the data source center account for a high proportion, and the

ratio of benign to malignant cases is not, therefore, as close as 1:1; this

issue could lead to differences in the diagnostic performance of DL

models for benign and malignant nodules. Therefore, more benign

cases will be included in future studies. This study has potential

clinical value. On the one hand, the DL models used herein can help

ultrasound radiologists judge benign and malignant thyroid nodules

in a close-to-real clinical setting, contributing to the development of a

subsequent treatment plan and provision of accurate and timely

medical services for patients. On the other hand, the accurate

identification of benign and malignant thyroid nodules may avoid

unnecessary fine-needle aspiration and surgery, reducing excessive

medical treatment and waste of medical resources. Finally, medical

resources are unbalanced between urban and rural areas in China and

around the world, and the DL models adopted herein are helpful in

solving this situation. In summary, the differential diagnosis of

benign and malignant thyroid nodules by DL models based on

ultrasound dynamic videos is worthy of further investigation and

validation in prospective clinical trials.
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FIGURE 5

Ultrasound video showing more about the nature of the nodule than the static image: Frames 1 and 36 show the different morphology of the calcification in
the nodule; frame 36 shows only a small part of punctate calcification in the periphery; frame 1 illustrates clear annular calcification in the periphery of the
nodule; frame 48 shows aspect ratio imbalance of the nodule (i.e., greater height than length); frame 60 illustrates the solid composition of the nodule. This
video completely shows three different malignancy features of the nodule: calcification, aspect ratio imbalance, and solid composition.
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