11 research outputs found

    Asymptotic Optimality of Myopic Ranking and Selection Procedures

    Full text link
    Ranking and selection (R&S) is a popular model for studying discrete-event dynamic systems. It aims to select the best design (the design with the largest mean performance) from a finite set, where the mean of each design is unknown and has to be learned by samples. Great research efforts have been devoted to this problem in the literature for developing procedures with superior empirical performance and showing their optimality. In these efforts, myopic procedures were popular. They select the best design using a 'naive' mechanism of iteratively and myopically improving an approximation of the objective measure. Although they are based on simple heuristics and lack theoretical support, they turned out highly effective, and often achieved competitive empirical performance compared to procedures that were proposed later and shown to be asymptotically optimal. In this paper, we theoretically analyze these myopic procedures and prove that they also satisfy the optimality conditions of R&S, just like some other popular R&S methods. It explains the good performance of myopic procedures in various numerical tests, and provides good insight into the structure and theoretical development of efficient R&S procedures

    Minimizing Completion Time for Order Scheduling: Formulation and Heuristic Algorithm

    No full text

    Treatment Planning for Volumetric-Modulated Arc Therapy: Model and Heuristic Algorithms

    No full text

    Grain Price Forecasting Using a Hybrid Stochastic Method

    No full text
    Grain price forecasting is significant for all market participants in managing risks and planning operations. However, precise forecasting of price series is difficult because of the inherent stochastic behavior of grain price. In this paper, a novel hybrid stochastic method for grain price forecasting is introduced. The proposed method combines decomposed stochastic time series processes with artificial neural networks. The initial parameters of the hybrid stochastic model are optimized by a random search using a genetic algorithm. The proposed method is finally validated in China’s national grain market and compared with several recent price forecasting models. Results indicate that the proposed hybrid stochastic method provides a satisfactory forecasting performance in grain price series

    A Coordinate Optimization Approach for Concurrent Design

    No full text

    Simulation Optimization for MRO Systems Operations

    No full text
    corecore